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Simplified Quadratic Optimization-Based IPMSM
Full-Speed Range Rotor Position Estimation in

Synchronous Rotating Frame
Fei Peng , Member, IEEE, Zhi Cao , Student Member, IEEE, Jianning Dong , Member, IEEE,

and Yunkai Huang , Member, IEEE

Abstract— This article proposes a rotor position and speed
estimation method for the interior permanent magnet synchro-
nous machine (IPMSM) in the full-speed range. The proposed
method is implemented in the synchronous rotating frame. Based
on the voltage equation of the IPMSM in the synchronous
rotating frame, a single-variable optimization problem is formu-
lated to solve the rotor position at each current sampling step.
After that, the solved position is fed into a phase-locked loop
observer to obtain the estimated rotor speed and smooth out the
estimation. The proposed position and speed estimation methods
are effective from standstill to high speed, and no estimation
algorithm switching is needed during speed variation. Details
about the convexity of the optimization problem, the effects of
parameter mismatch and sampling noise, and the solving method
of the problem are discussed. Finally, experiments are conducted
in both steady and dynamic situations to validate the effectiveness
and robustness of the proposed algorithm.

Index Terms— Full-speed range, interior permanent magnet
synchronous machine (IPMSM), optimization problem, position
sensorless control.

I. INTRODUCTION

THE interior permanent magnet synchronous machine
(IPMSM) is widely used as a traction motor because of

its high power density and wide speed range. To drive the
IPMSM, the signal of rotor position is needed. The rotor posi-
tion signal is often obtained from a position sensor mounted
on the shaft. However, in typical applications requiring high
reliability, e.g., traction, the position sensor may fail as a result
of mechanical or environmental issues. Therefore, a fallback
position estimation method independent of the shaft-mounted
sensor can be used. The estimated position can be used for
status diagnosis during normal operation. In the case of a
position sensor failure, a transition between the sensed position
and the estimated one will be carried out to keep the drive
running [1].

The IPMSM rotor position estimation algorithm can be
classified into two different categories. One is usable for the
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estimation at medium or high speed, while the other one is
able to estimate at low or zero speed.

The back-electromotive force (Back EMF) is a good indi-
cator of the rotor position. Therefore, the extended Back EMF
method is widely used to detect the rotor position at medium to
high speeds. First, based on the voltage equations of IPMSM,
the extended Back EMF is derived. A couple of methods are
available for the Back EMF estimation. Among them, Kalman
filter methods [2], model reference adaptive methods [3], and
observer methods [4], [5] are the most commonly used. The
position of the rotor is then obtained from the estimated Back
EMF. However, the Back EMF is proportional to the motor
speed. When the motor runs at low speed, the Back EMF is
small and difficult to be estimated. Therefore, this category of
methods is only effective when the rotor speed is sufficiently
high.

At zero to low speed, saliency-based methods are the
standard approach for position estimation of IPMSM. The
stator inductance of the IPMSM is a function of rotor position.
High-frequency current or voltage signals are injected into the
stator to estimate the stator inductance [6]–[17]. Since the
pulsewidth modulation (PWM) voltage and its corresponding
current ripple have high-frequency components, they are also
sampled and taken as high-frequency signals [18]–[23]. How-
ever, this category of position estimation methods uses high-
or low-pass filters for signal processing. As a consequence,
they usually have limited dynamic response, and the injected
signal has to be carefully selected. Moreover, the injected
high-frequency signal causes acoustic noise and additional
power losses. Therefore, this kind of methods is often used
at low speed only.

The two categories of position estimation method are often
adopted together to estimate the IPMSM rotor position in
the full-speed range [1], [13], [24]. Therefore, a switching
method is needed when the motor speed varies between low
and high. In the traction application, the motor speed varies
very often; therefore, the two position estimation methods have
to be frequently switched from each other. The implementation
and the estimation method switching increase the control
system complexity. Since both methods need initialization, the
transition between the two methods has to be carefully imple-
mented. Frequent switching between the estimation methods
may also result in unwanted oscillations in the position and
speed estimations.

2332-7782 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Unified position estimation methods have been proposed
to tackle the aforementioned method switching problem for
IPMSM control in the full-speed range [23], [25]–[29]. These
methods utilize a unified voltage model [23], [27], [28] or
flux model [25], [26] in the full-speed range. No estimation
method switching is needed during speed variation. In [25],
a flux observer is designed to observe the rotor flux, only the
difference between the estimated rotor flux and the known
permanent magnet (PM) flux is fed back to correct the
estimation, the estimation accuracy is limited. In [26], the flux
observer is designed in a quadratic form, and more prior
knowledge and limits are applied; therefore, the estimation
results are more accurate. However, there are several high-
and low-pass filters involved in the estimation, which makes
the design complicated. In [23] and [27], the position esti-
mation is interpreted as a multivariable quadratic optimiza-
tion problem. The rotor position and speed are estimated
simultaneously from the solution of the optimization problem.
However, the solving process is complex and time-consuming.
Wang et al. [24] and Peng et al. [25] propose a method to
simplify the process to solve the optimization problem in the
stationary frame. The rotor position is obtained at first from
the solution. Then, a conventional phase-locked loop (PLL)
observer is adopted to obtain the speed. The computation
demand is reduced. Since the derivation and solving process
are performed in the stationary frame, therefore, this method is
quite straightforward. However, several trigonometric function
computations are needed while solving the estimated position,
which increases its computation time.

Based on the previous work presented in [28] and [29],
this article proposes an improved position estimation method
for IPMSM using simplified quadratic optimization in the
full-speed range. The proposed method also interprets the
position estimation as a single-variable optimization problem.
However, to further clarify the derivation and simplify the
solving process, the optimization problem is formulated based
on the IPMSM voltage equations in the synchronous rotating
frame. Moreover, after applying the Taylor expansion on the
voltage equation in the synchronous rotating frame, the con-
vexity of the problem, the sampling noise, and parameter
sensitivity are more straightforward to analyze, and the solving
method is also remarkably simplified compared to the similar
method presented in [23] and [27]–[29]. In the end, both the
effectiveness and the robustness of the proposed method are
validated on a traction motor.

II. IPMSM MODEL IN SYNCHRONOUS ROTATING FRAME

The IPMSM model is first derived as differential equations
in the estimated rotating frame. If the rotor position is accu-
rately known, then IPMSM voltage equation in the rotating
dq frame is expressed as[

ud

uq

]
=

[
Rs −ωe Lq

ωe Ld Rs

][
id

iq

]

+
[

Ld 0
0 Lq

]
d

dt

[
id

iq

]
+ ψ fωe

[
0
1

]
(1)

where id , iq and ud , uq are the currents and voltages in the
dq frame, respectively. Rs represents the stator resistance.

Ld and Lq are the dq-axis stator inductances. ωe is the
electrical angular speed of the rotor. ψ f is the stator flux
linkage from the PM.

Assuming that an estimated frame is rotating at the same
speed as the dq frame, the angle between them is

θ̃ = θe − θ̂ (2)

where θe is the electrical position of the real d-axis with
respect to phase a, while θ̂ is that of the estimated frame.
In the estimated frame, the voltage equation is derived as[

ûd

ûq

]
=

[
Rs −ωe L1

ωe L1 Rs

][
îd

îq

]
+

[
L1 0
0 L1

]
d

dt

[
îd

îq

]

+ψ fωe

[− sin
(
θ̃
)

cos
(
θ̃
)

]

+ La
(
θ̃
) d

dt

[
îd

îq

]
+ ωe Lb

(
θ̃
)[ îd

îq

]
(3)

where îd , îq and ûd , ûq are the currents and voltages in the
estimated frame, respectively. La(θ̃) and Lb(θ̃ ) are defined as

La
(
θ̃
) = L2

[
cos

(
2θ̃

)
sin

(
2θ̃

)
sin

(
2θ̃

) −cos
(
2θ̃

) ]

Lb
(
θ̃
) = L2

[− sin
(
2θ̃

)
cos

(
2θ̃

)
cos

(
2θ̃

)
sin

(
2θ̃

) ]
. (4)

L1 and L2 are defined as

L1 = Ld + Lq

2

L2 = Ld − Lq

2
. (5)

Equation (3) is then discretized for digital implementation[
ûd(k)
ûq(k)

]
=

[
Rs −ωe L1

ωe L1 Rs

][
îd(k)
îq(k)

]
+ L1

�îdq(k)

T

+ψ f ωe

[ − sin
(
θ̃ (k)

)
cos

(
θ̃ (k)

)
]

+ La
(
θ̃ (k)

)�îdq(k)

T
+ ωe Lb

(
θ̃ (k)

)[ îd(k)
îq(k)

]
(6)

where k is the time step and T denotes the sampling period.
La(θ̃ (k)) and Lb(θ̃ (k)) are defined as

La
(
θ̃ (k)

) = L2

[
cos

(
2θ̃ (k)

)
sin

(
2θ̃ (k)

)
sin

(
2θ̃ (k)

) −cos
(
2θ̃ (k)

)
]

Lb
(
θ̃ (k)

) = L2

[− sin
(
2θ̃ (k)

)
cos

(
2θ̃ (k)

)
cos

(
2θ̃ (k)

)
sin

(
2θ̃ (k)

)
]
. (7)

�îdq(k) is defined as

�îdq(k) =
[

îd(k)
îq(k)

]
−

[
îd(k − 1)
îq(k − 1)

]
. (8)

III. PROPOSED QUADRATIC OPTIMIZATION-BASED

ESTIMATION METHOD

The optimization problem to solve the rotor position is
implemented based on (6) since it is effective in the full-speed
range. The optimization problem can be formulated as the
minimization of a cost function. After solving the optimization
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Fig. 1. Block diagram of the proposed improved rotor position and speed estimation method based on quadratic optimization in the synchronous rotating
frame.

problem, the obtained result is fed into a PLL observer to filter
out the high-frequency noise and obtain the rotor speed. The
convexity of the cost function, the sensitivity of the method
on sampling noise, and parameter mismatches are analyzed
in detail. The high-frequency signal required at zero and low
speed is also discussed. In the end, the solving method of the
optimization problem is presented.

A. Proposed Simplified Quadratic Optimization for Position
Estimation

It is observed from (6) that the first two terms do not
contain θ̃ , while the last three terms are related to θ̃ . Then,
the position estimation problem is transformed to solving
the correct θ̃ so that (6) can hold. However, there are two
dimensions in (6), while only one variable has to be solved.
Therefore, a quadratic optimization problem is formed so that
the optimal θ̃ in the least-squares sense is obtained in the end.
First, in order to separate the terms that have no relationship
with θ̃ , define an intermediate variable as[

ed(k)
eq(k)

]
=

[
ûd(k)
ûq(k)

]

−
[

Rs −ωe L1

ωe L1 Rs

][
îd(k)
îq(k)

]
− L1

�îdq(k)

T
. (9)

Then, the quadratic cost function G(k) is defined as

F(k) =
[

ed(k)
eq(k)

]
− ψ f ωe

[ − sin(�θ(k))
cos(�θ(k))

]

− La(�θ(k))
�îdq(k)

T
− ωe Lb(�θ(k))

[
îd(k)
îq(k)

]

G(k) = F(k)T F(k) (10)

where �θ(k) is a variable. The optimization problem is
formulated as

min
�θ(k)

G(k). (11)

Ideally, the solution for �θ(k) is θ̃ (k), and in that case,
G(k) = 0. Nevertheless, the factors of sampling noise,
parameter mismatch, and speed estimation error will prevent
G(k) from reaching zero. The effect of these factors will
be discussed afterward. After obtaining the optimal �θ(k),

according to (2), the estimated rotor position at time k could
calculated by

θ̂e(k) = θ̂ (k)+�θ(k). (12)

In (10), ωe is needed for calculation; however, it is not
available from measurement. After obtaining the estimated
position θ̂e(k), a regular PLL observer is used to estimate ωe

and gives out the initial value for solving the optimization
problem, as shown in Fig. 1. The PLL observer used in this
article is the same as that used in [29], from where more details
could be found.

B. Convexity Examination of the Cost Function

In order to guarantee the solvability of the optimization
problem presented by (11), the cost function (10) has to be
at least locally convex. Therefore, its convexity has to be
examined.

1) Standstill: At standstill, the term with ωe in (10) becomes
0. It is then reformulated as

F(k) =
[

ed(k)
eq(k)

]
− La(�θ(k))

�îdq(k)

T

G(k) = F(k)T F(k). (13)

Substituting (6) and (9) into (13), there is

G(k) =
[

ed(k)
eq(k)

]T [
ed(k)
eq(k)

]

+ 4L2
2�îdq(k)

T�îdq(k)

T 2

(
sin

(
�θ(k)− θ̃ (k)

))2
. (14)

It can be seen that if �îdq(k) = 0, G(k) remains con-
stant, which makes the optimization problem unsolvable.
If �îdq(k) �= 0, G(k) becomes a periodical function with
a period of π . G(k) is locally convex within [−π/2, π/2].
The optimal solution that minimizes G(k) is �θ(k) = θ̃ (k).
To keep �idq(k) �= 0, either high-frequency voltage or
high-frequency current signal has to be added on the stator
current.

Since G(k) is only locally convex, in the iteration process,
the initial value of �θ(k) should be in the range of θ̃ (k)±π/2.
If not, the solution of �θ(k) will be π away from θ̃ (k). The
desired initial value of �θ(k) is obtained by determining the
polarity at startup.
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Fig. 2. Waveforms of G(k) with θ̃ (k) being π/2 rad at rated speed.

Fig. 3. Waveforms of G(k) with θ̃ (k) being π/2 rad at 1/10 rated speed.

2) Medium and High Speeds: At medium to high speeds,
the back EMF term will dominate in (10). The voltage drop
caused by L2 is usually small. Therefore, to simplify the
analysis, the terms associated with L2 are neglected in this
situation. Then, G(k) could be rewritten as

G(k) ≈ 4ψ f
2ωe

2

(
sin

(
�θ(k)− θ̃ (k)

2

))2

. (15)

It can be derived from (15) that the period of G(k) is 2π
and is convex between [−π, π]. Therefore, the optimization
function could be solved, and the solution is unique.

To validate the analysis above, Figs. 2 and 3 show the
waveforms of G(k) with respect to �θ(k) − θ̃ (k) obtained
from (15) and (10), respectively, at the rated speed and
1/10 of the rated speed, with the rated current. The difference
introduced by neglecting the terms associated with L2 is
observable, but it is small. Thus, the approximation of (15)
is reasonable. The waveforms of (10) are all convex in the
range [−π, π], even at different speed. It is also shown that
the slope of G(k) increases with the speed. A higher slope
indicates stronger robustness against sampling noise in real
applications.

3) Low Speed: At low speed, none of the terms in (10) is
small enough to be negligible compared to others. This makes
the analysis more complex. To make the analysis possible,
F(k) is expanded into the Taylor series at θ̃ (k), and then,
G(k) becomes

G(k) = ∥∥A
(
θ̃ (k)

)∥∥2(
�θ(k)− θ̃ (k)

)2
(16)

Fig. 4. Waveforms of G(k) with θ̃ (k) being π/2 rad at 1/10 and 1/50 of the
rated speed, where fN is the rated motor rotating frequency.

where ‖A(θ̃(k))‖2 is the slope of G(k)

A
(
θ̃ (k)

)
= 2ωe L2

[
cos

(
2θ̃ (k)

)
sin

(
2θ̃ (k)

)
sin

(
2θ̃ (k)

) − cos
(
2θ̃ (k)

)
][

îd

îq

]

+ 2L2

[
sin

(
2θ̃ (k)

) − cos
(
2θ̃ (k)

)
− cos

(
2θ̃ (k)

) − sin
(
2θ̃ (k)

) ]
�îdq(k)

T

+ωeψ f

[
cos

(
θ̃ (k)

)
sin

(
θ̃ (k)

) ]
. (17)

To validate the approximation method above, the waveforms
of G(k) with respect to �θ(k) − θ̃ (k) are calculated from
both (10) and (16) at 1/10 and 1/50 of the rated speed,
respectively. Fig. 4 compares the waveforms obtained from
the two equations. Both (16) and Fig. 4 indicate that G(k) is
at least locally convex when �θ(k) − θ̃ (k) is near zero and
‖A(θ̃ (k))‖ �= 0. Therefore, (11) is solvable, and the correct
estimation result could be obtained if the two conditions are
met: 1) ‖A(θ̃ (k))‖ > 0; this could be achieved by injecting
high-frequency voltage or current signal at low speed and
2) the initial value of �θ(k) is sufficiently close to θ̃ (k), which
is met when the PLL converges.

C. Sampling Noise Sensitivity

In practice, noises are brought into the variable ûd , ûq , îd ,
and îq by current sampling and PWM generation. According
to (1), the current noises will eventually reflect on the voltage.
A lumped noise voltage undq = [und unq]T is used to represent
the overall sampling noise. Then, the Taylor expansion of F(k)
considering noise is expressed as

F ≈
[

und

unq

]
+ A

(
θ̃ (k)

)(
�θ(k)− θ̃ (k)

)
. (18)

Based on (18), the position estimation error is derived as

�θ(k)− θ̃ (k) ≈ −
[

und unq
]
A
(
θ̃ (k)

)
∥∥A

(
θ̃ (k)

)∥∥2 . (19)

1) Zero Speed: At standstill, the terms associated with ωe

are zero. Error in the estimated position introduced by the
noise is

�θ(k)− θ̃ (k) ≈
∥∥undq

∥∥
2L2

∥∥�îdq(k)
∥∥/T

cos
(
2θ̃ (k)+ ψn

)
(20)
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where ψn is the phase caused by sampling noise, and it is
random if the noise is random. It is shown that the error is
dependent on several items. Larger L2 and ‖�îdq(k)‖ help
reduce the error. The sampling noise amplitude ‖undq‖ should
be kept at a low level to minimize the error.

2) Medium and High Speeds: The voltage drop caused by
L2 is trivial at medium and high speeds compared to the back
EMF, and the terms associated with L2 are neglected. The
error introduced is then derived as

�θ(k)− θ̃ (k) ≈
∥∥undq

∥∥ cos
(
θ̃ (k)+ ψn

)
ωeψ f

. (21)

According to (21), the amplitude of noise level is directly
related to the estimation error; therefore, it should be reduced
as much as possible. The estimation error gets reduced as the
back EMF gets larger. This indicates the estimation is less
noise prone at higher speed.

It should be noted that the estimation error caused by
noises is random, and its frequency is as high as the sampling
frequency. Therefore, the estimation error caused by sampling
will be significantly attenuated after going through the PLL
observer.

D. High-Frequency Signal Injection at Standstill to Low
Speed

According to (21), the sampling noise will cause larger
position estimation error at standstill to low speed because
of the low back EMF. The position estimation algorithm will
fail if the error becomes too large. As can be seen from (19),
the error is reduced by keeping ‖A(θ̃ (k))‖ as high as possible.
High-frequency signal injection can be used to achieve this
goal. At low speed, since both ωe and L2 are small, L2ωe(k)
is neglected. ‖A(θ̃ (k))‖2 is reformulated as

∥∥A
(
θ̃ (k)

)∥∥2 ≈ 4L2
2

∥∥�îdq(k)
∥∥2

T 2
+ ωe

2ψ f
2

+ 4L2ωeψ f

T
�îdq(k)

T

[
sin

(
θ̃ (k)

)
− cos

(
θ̃ (k)

)
]
. (22)

If the position estimation algorithm does not fail, θ̃ (k) will be
very close to zero. Therefore, (22) becomes

∥∥A
(
θ̃ (k)

)∥∥2 ≈ 4L2
2

T 2

(
�îd(k)

2 +�îq(k)
2)

+ωe
2ψ f

2 − 4L2ωeψ f

T
�îq(k). (23)

It is shown that the value of ‖A(θ̃ (k))‖2 is determined by
the variation of îd and îq . In actual applications, �îq(k) in
each sampling period is small because the sampling frequency
is high. Therefore, the terms associated with �îq(k) are
neglected. Thus, (23) becomes

∥∥A
(
θ̃ (k)

)∥∥2 ≈ 4L2
2

T 2
�îd(k)

2 + ωe
2ψ f

2. (24)

It is clear that, in order to keep the value of ‖A(θ̃ (k))‖2 high
with any ωe, the term �îd is needed to be none zero when
ωe is small. Thus, high-frequency signal injection should be
applied at low speed.

There are several types of high-frequency signals used for
injection. The most commonly used one is the sinusoidal
signal. However, if sinusoidal signal is used, �îd(k) will
become

�îd(k) = Acos(ωht) (25)

where A is the amplitude of the injection current and ωh is the
angular speed of the high-frequency signal. According to (25),
�îd(k) will be zero at some point (ωh t = pi/2 + N pi, N =,
±1,±2, . . .). Thus, in order to keep ‖A(θ̃ (k))‖ nonzero all
the time, square wave or triangular wave signal should be
injected instead of the sinusoidal signal. The injected signal is
defined as

�îd(k) = ±IH (26)

where IH is the peak-to-peak value of the injected current.
This injected current signal could be generated by applying
an additional high-frequency voltage alternating uH on the
voltage reference in the estimated d-axis

uH = ±Ld
2IH

T
. (27)

It has to be noted that the injected voltage is a square wave,
and the actual caused high-frequency current is a triangular
wave. However, in order to keep the injected current as low
as possible, the sign of the injected voltage is recommended
to alternate every sampling period. In this case, the injected
current frequency is half of the sampling frequency, and the
sampled current in the controller is still a square wave.

Then, (24) becomes

∥∥A
(
θ̃ (k)

)∥∥2 ≈ 4L2
2 IH

2

T 2
+ ωe

2ψ f
2. (28)

Compared to (15), through injection of high-frequency square
wave signal, ‖A(θ̃ (k))‖2 is kept none zero with any ωe.

E. Parameter Sensitivity

The proposed position estimated method relies on the
accurate voltage equation of the motor. However, in practical
implementation, the motor parameters in the digital controller
might be different from those of the real motor. Therefore,
a parameter sensitivity study is carried out.

1) Zero and Low Speed: To simplify the analysis, it is
assumed that Id = 0 control is adopted at standstill and low
speed. Thus, there is

�îd(k) = ±IH

îd(k) = ±IH

2
. (29)

Mismatch in L2:
First, L1 is assumed to be accurate, and there is only mis-

match in L2. Neglecting small terms, the position estimation
could be approximated by

�θ(k)− θ̃ (k) ≈ ± ψ f ωe L̃2T

4
(
L2 + L̃2

)2
IH

(30)

where L̃2 denotes the mismatch in L2. As can be seen
from (30), the error is proportional to L̃2 and the speed.
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Moreover, the error alternates between positive and negative.
Therefore, it can be significantly attenuated by the PLL
observer.

Mismatch in L1:
Then, L2 is assumed to be accurate, and there is only mis-

match in L1. By neglecting small terms and positive–negative
alternating terms, the error is approximated by

�θ(k)− θ̃ (k) ≈ −L2
IH

2

T ωe L̃1 − ψ f L̃1îqωe
2

4L2
2 IH

2

T 2 + ψ f
2ωe

2
(31)

where L̃1 denotes the mismatch L1. It can be seen that the
error is proportional to L̃1. Therefore, L̃1 should be reduced
as much as possible.

Mismatch in Rs:
If there is mismatch in Rs , by neglecting small terms, there

is only positive–negative alternating terms left in the position
estimation error

�θ(k)− θ̃ (k) =
± IH

T R̃
(
−2L2 îq + ψ f ωe

2

)

4L2
2 IH

2

T 2 + ψ f
2ωe

2
(32)

where R̃ denotes the mismatch in Rs . Apparently, the error is
proportional to R̃ and îq . Since the error is alternating between
positive and negative, it is also significantly attenuated after
going through the PLL.

2) High Speed: When the speed is high, terms associated
with L2 are relatively trivial and are neglected. The effect of
the difference between ωe and ω̂e is studied. If ω̂e could not
track ωe accurately, G(k) will become

G(k) = ψ f
2(ω + ω̃)2

(
�θ(k)− θ̃ (k)

)2 + ψ f
2ω̃2. (33)

Equation (33) indicates that G(k) will not reach zero if ωe and
ω̂e are different. However, the solution of �θ(k) is still θ̃ (k).
Therefore, no error is introduced in the high-speed case.

IV. SOLVING THE OPTIMIZATION PROBLEM

Since at least local convexity of G(k) near θ̃ (k) in any
situation is guaranteed, (11) could be solved numerically.
Conventional Newton or quasi-Newton methods need complex
calculation of the second-order derivative, which puts too
much burden for the digital controller. A simplified approach
based on the Taylor expansion is used in this article to release
the computational burden. F(k) in (10) is expanded near zero
as

F(k) ≈ F(k)
∣∣
�θ(k)=0 + d F(k)

�θ(k)

∣∣
�θ(k)=0 (�θ(k)) (34)

and
d F(k)

�θ(k)

∣∣
�θ(k)=0 = A(0) = 2ωe L2

[
1 0
0 −1

][
îd

îq

]

− 2L2

[
0 1
1 0

]
d

dt

([
îd

îq

])
+ ψ f ωe

[
1
0

]
.

(35)

Since G(k) = F(k)T F(k), the solution of �θ(k) is obtained
as

�θ(k) = − A(0)T F(k)
∣∣
�θ(k)=0

A(0)T A(0)
. (36)

Fig. 5. Experimental setup based on a traction motor.

TABLE I

KEY PARAMETERS OF THE MOTOR AND MOTOR DRIVE

According to the discussion above, A(0) > 0 always
holds because of high-frequency signal injection. Therefore,
the solution of �θ(k) is always obtained with less numerical
error.

After several iterations to solve (11), the final estimation
rotor position at the current sampling period is obtained.
According to (34), the value of G is approximated by the
Taylor expansion with �θ(k) = 0; therefore, no trigonometric
function is needed in the calculation expect calculating ûd ,
ûq ,îd , and îq . The computation cost is significantly reduced.
Since, when �θ(k) is small, according to Fig. 4, the estimated
G is very close to the analytical value of G, therefore, few
iterations are needed to get the accurate estimation result.
After obtaining �θ(k), θ̂e(k) is obtained by (12). After going
through the PLL observer, the final estimated position θ̂P L L(k)
and speed ω̂e(k) are obtained.

V. EXPERIMENTAL VERIFICATION

To validate the proposed position estimation method, exper-
iments are conducted on a traction motor, as shown in Fig. 5.
The traction motor is coupled to a dynamometer. Torque
control or speed control can be applied by the dynamometer.
The test motor is driven by a motor drive, and the position
estimation algorithm is implemented in the motor drive. Table I
lists key parameters of the motor and the motor drive. The
variables in the control and position estimation algorithm are
recorded to the RAM of the motor drive and then transferred
to the PC. Only two iterations are used in the solving process.
The bandwidth of the PLL observer is set to be 50 Hz.

A. Position Estimation at Standstill and Low Speed

At zero to low speed, a square voltage waveform with an
amplitude of 25 V and a frequency of 5 kHz is injected
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Fig. 6. Estimated and measured positions at starting up.

Fig. 7. Measured and estimated positions, speeds, and q-axis current at 0 rpm.

into the stator as a high-frequency signal to estimate the
position. This high-frequency voltage only causes the current
ripple with an amplitude of less than 2.5 A in the d-axis.
That current ripple is relatively small for the test motor.
However, it is sufficiently larger than the current sampling
noise; therefore, the estimation error caused by the current
sampling is limited. The high-frequency current ripple does
cause acoustic noise. The noise level measured 1.0 m from
the test motor at standstill rises from 52 to 56 dB(A); the
noise increase is small and acceptable for traction applications.
Several experiments, including starting and load applying, are
performed at standstill and low speed.

The positions obtained from estimation and measurements
during starting up are compared in Fig. 6. It has to be noted
that a normal polarity check is performed before starting up.
As can be seen, the estimated position converges swiftly, and
little estimation error is observed.

Then, the performance of the proposed method is verified
by applying load at constant speed.

Figs. 7 and 8 compare waveforms of the measured position,
the estimated position, the measured speed, the estimated

Fig. 8. Measured and estimated positions, speeds, and q-axis current at
300 rpm.

speed, and the q-axis current at 0 and 300 rpm, respectively.
As can be seen, the speed and position estimations are accurate
even during current transients.

B. Position and Speed Estimation at High Speed

The high-frequency signal injection has to be turned off
at high speed. In this test, it is assumed that the voltage
noise amplitude ‖undq‖ of the system is limited to 1.5%
of Udc, which is relatively easy to be achieved with appropriate
compensation. Then, according to (21), in order to limit
the maximum estimation error caused by sampling noise
within 0.5 rad, the minimum ωe for high speed is calculated as
166.7 rad/s, which is about 400 rpm. Instead of turning off the
high-frequency signal injection immediately, in the test, the
injected voltage amplitude starts to decrease linearly when
the motor speed exceeds 400 rpm and becomes zero when
the motor speed reaches 800 rpm.

Fig. 9 shows waveforms of the measured position, the esti-
mated position, the measured speed, the estimated speed, and
the q-axis current at 3000 rpm. It is shown that the speed and
position estimations are not affected by the current dynamics.

C. Position and Speed Estimation Under Speed Dynamics

More dynamic tests are performed to verify the perfor-
mance of the proposed method during speed transients. First,
the motor is accelerated from standstill to 5000 rpm with
iq = 30 A. The measured and estimated speed, position
estimation error, the value of A, and iq are shown in Fig. 10.
It is shown that, during the speed acceleration, the speed
estimation is accurate and fast, the estimation error is small,
and the value of A is guaranteed to be larger than zero.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 03,2021 at 13:16:50 UTC from IEEE Xplore.  Restrictions apply. 



1534 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 7, NO. 3, SEPTEMBER 2021

Fig. 9. Measured and estimated positions, speeds, and q-axis current at
3000 rpm.

Fig. 10. Measured and estimated positions, estimation error, and A- and
q-axis currents during a constant current acceleration.

Another test is performed by accelerating the motor from
negative speed to positive speed. iq changes several times
during the acceleration, as presented in Fig. 11. It shows

Fig. 11. Measured and estimated positions, estimation error, and A- and
q-axis currents during a variable current acceleration.

that the estimated speed tracks the measured speed precisely.
The estimation error is limited even during speed or current
transients. A is always larger than zero. It has to be noted
that the position estimation error is slightly larger at low
speed, which can be attributed to the unmodeled cross coupling
between the dq-axes. Since the unmodeled mismatch is small,
the position estimation error is also limited.

D. Algorithm Computation Time and Injected Voltage
Comparison

The proposed position estimation algorithm is implemented
with a 300-MHz processor. In the test, two iterations are
used to get the estimation results, and the total execution
time, including signal sampling, current control, position,
and speed estimation, is 30 μs. Compared with the existing
optimization-based position estimation method, the algorithm
proposed in [27] needs 33 μs to execute with only one iteration
on a 900-MHz processor. The method proposed in [29] is also
implemented and tested on the 300-MHz processor. Since that
method is similar to the proposed method, the execution time
is close. That method is a little bit slower than the method
proposed in this article, but that proposed method is less
complex for analysis compared to that method. With the same
dc bus voltage, the injected voltages in this test and in [29]
are both square waves with a 25-V amplitude and a 5-kHz
frequency. The injected voltage is much smaller than that used
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TABLE II

BRIEF COMPARISON WITH EXISTING OPTIMIZATION-BASED POSITION ESTIMATION METHOD

Fig. 12. Current pulse in the q-axis for parameter mismatch tests.

Fig. 13. Recorded position estimation errors under parameter mismatch tests
at zero speed.

in [27]. A brief summary of the algorithm computation burden
and the injection voltage of the recent optimization-based
position estimation method is shown in Table II. It is shown
that the computation burden of the proposed position estima-
tion algorithm is significantly reduced. Therefore, the cheaper
microprocessor could be selected to reduce the system cost.

E. Parameter Sensitivity Test

The parameter mismatch between the real motor and motor
drive exists in real applications. Experiments are conducted
to test the parameter sensitivity of the proposed position
estimation method. Two tests are performed.

First, at zero speed, the parameters Rs , Ld , and Lq in
the controller change from −20% to +20% of their rated
values, respectively. A current pulse of 30 A in the q-axis
is applied, as shown in Fig. 12. The position estimation
errors under these cases are shown in Fig. 13. At zero speed,
the high-frequency signal injection is active, it is shown that
the position estimation errors under these parameter mismatch
cases are similar, and no obvious error is caused.

Second, at 3000 rpm, the parameters Rs , Ld , Lq , and ψ f

in the controller are changed from −20% to +20% of their
rated values, respectively. The same current pulse, as shown
in Fig. 12, is applied. The Position estimation errors under
these mismatch cases are shown in Fig. 14. It is shown
that, compared with the position estimation error with rated

Fig. 14. Recorded position estimation errors under parameter mismatch tests
at 3000 rpm.

parameters, mismatched parameters, such as Ld , Lq , and ψ f ,
do cause additional estimation errors. However, these error are
small and limited.

The above tests at low speed and high speed indicate that the
proposed position estimation method has sufficient robustness
for parameter mismatch.

VI. CONCLUSION

This article proposed a full-speed range rotor position and
speed estimation method for IPMSM in the synchronous
rotating frame. A single-variable optimization problem has
been formulated to solve the rotor position at the current
sampling steps. The solved position is fed into a PLL observer
to get the estimated rotor speed and smooth out the estimated
rotor position. The convexity of the optimization problem,
the effects of sampling noise, and the parameter mismatch
are analyzed. By formulating and analyzing the optimization
in the synchronous frame, the derivation and solving process
are more simplified. Finally, experiments are conducted in
both steady and dynamic situation to validate the proposed
optimization-based position and speed estimation method. The
proposed algorithm can obtain the estimated rotor position
and speed with high accuracy throughout the whole speed
range, as shown in the experiments. The robustness for para-
meter mismatch is also verified by experiments. Since a less
trigonometric function is required, the computational cost and
complexity are significantly reduced compared to existing
optimization-based methods.
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