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Epilepsy diagnosis based on Interictal Epileptiform Discharges (IEDs) in scalp electroencephalograms
(EEGs) is laborious and often subjective. Therefore, it is necessary to build an effective IED detector
and an automatic method to classify IED-free versus IED EEGs. In this study, we evaluate features that
may provide reliable IED detection and EEG classification. Specifically, we investigate the IED detector
based on convolutional neural network (ConvNet) with different input features (temporal, spectral, and
wavelet features). We explore different ConvNet architectures and types, including 1D (one-dimensional)
ConvNet, 2D (two-dimensional) ConvNet, and noise injection at various layers. We evaluate the EEG clas-
sification performance on five independent datasets. The 1D ConvNet with preprocessed full-frequency
EEG signal and frequency bands (delta, theta, alpha, beta) with Gaussian additive noise at the output
layer achieved the best IED detection results with a false detection rate of 0.23/min at 90% sensitivity.
The EEG classification system obtained a mean EEG classification Leave-One-Institution-Out (LOIO)
cross-validation (CV) balanced accuracy (BAC) of 78.1% (area under the curve (AUC) of 0.839) and
Leave-One-Subject-Out (LOSO) CV BAC of 79.5% (AUC of 0.856). Since the proposed classification
system only takes a few seconds to analyze a 30-min routine EEG, it may help in reducing the human
effort required for epilepsy diagnosis.

Keywords: Deep learning; convolutional neural networks; EEG classification; interictal epileptiform dis-
charges; multiple features; noise injection.
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1. Introduction

Epilepsy is a neurological disorder associated with
recurrent unprovoked seizures. It is the fourth fre-
quent neurological condition, affecting 70 million
people worldwide.1 Epilepsy is mainly diagnosed
based on the presence of Interictal Epileptiform Dis-
charges (IEDs) in electroencephalogram (EEG).2,3

Although there are other features linked to epilepsy3

such as seizures (ictal events), high-frequency oscil-
lations (HFOs), periodic lateralized epileptiform dis-
charges (PLEDs), IEDs are still considered as the
main markers of epilepsy in routine clinical setting.
Visual interpretation of routine and prolonged scalp
EEG recordings by trained clinicians is laborious and
error prone.4 Thus, the development of efficient tech-
niques for automatic IED detection is highly bene-
ficial for effective diagnosis, treatment planning and
drug management for epilepsy.2,5 In the literature, a
wide variety of techniques has been evaluated for IED
detection, namely template matching, mimetic anal-
ysis, parametric modeling, spectral methods, and,
since recently, also deep learning methods.6 However,
only a few studies have evaluated EEG classification
based on IED detection.7–10

Recently, deep convolutional neural networks
(ConvNets) have attained superior performance for
IED detection.6–11 Features learned by deep learn-
ing techniques have often proven to be more robust
than hand-engineered features. Roy et al.12 have
reported that 40% of the reviewed studies applied
ConvNets. In the literature, studies have been per-
formed based on various types of data inputs,
including one-dimensional (1D) preprocessed tempo-
ral EEG, Fast Fourier Transform (FFT) coefficients,
two-dimensional (2D) preprocessed temporal multi-
channel EEGs, and 2D spectral and wavelet coeffi-
cients. Studies have also shown that the detection
of IEDs by EEG frequency sub-bands could improve
the efficiency of IED detection7,13,14 as the sub-bands
provide additional details on the underlying neuronal
activities. Likewise, wavelet transform is proven to
be valuable in IED detection,13,15 and seizure anal-
ysis.16 In wavelet analysis, the signal is convolved
by a function identified as the mother wavelet, and
the transform is calculated for various segments of
the signal in the temporal and frequency domain,
providing different time scales at various frequen-
cies. Discrete Wavelet Transform (DWT) enables

multiresolution signal processing, offering localiza-
tion in both frequency and temporal domains.17

Daubechies 4 (db4) wavelets show a strong corre-
lation with IEDs among standard wavelet families.15

Therefore, we included orthogonal wavelets from db4
to db10 from the Daubechies family for our analy-
sis. CWT is better for the time–frequency analysis
of EEG signals.18 It allows us to split and examine
instantaneous changes of time series signal at arbi-
trary wavelet scales and frequencies of interest.19 We
have selected Mexican hat and Morlet wavelets as
mother wavelet due to their capability in exploiting
nonstationary epileptic IEDs and suitability for spec-
tral analysis.18,20

Training a deep ConvNet with a relatively small
dataset can force the model to overfit on training
samples, failing to generalize on the new or unseen
dataset. Small datasets may also pose a more chal-
lenging mapping problem for models to learn, given
their sparse sampling of data points in the high-
dimensional feature space. One approach to making
the high-dimensional feature space simpler to learn
is to infuse noise to input data during network train-
ing.21,22 The addition of Gaussian noise during the
training of a model has a regularization effect that
improves the generalizability of the neural network.23

Therefore, we added Gaussian noise during the train-
ing of the IED detector.

We have reviewed the latest studies related to
EEG-level classification in Table 1. In two of our
preliminary studies,8,9 we achieved a cross-validated
area under the curve (AUC) of 0.87 (IED detec-
tion AUC of 0.935)9 and 0.847,8 respectively, by
applying ConvNets for IED-based epileptic EEG
classification. Roy et al. have achieved an accuracy
of 86.6% with Recurrent Neural Network (RNN)-
based ChronoNet24 on the Temple University Hos-
pital (TUH) EEG data corpus.26 Antoniades et al.
proposed CNN-based27 and ensemble deep learning-
based28 IED detection on joint scalp-intracranial
EEG data and achieved a mean accuracy of 89%
and 68%, respectively. Spyrou et al.29 proposed a
combined tensor factorization and machine learn-
ing approach to analyze epileptic EEG data and
reported a mean LOSO specificity of 60% (sensitiv-
ity of 70%). Lin et al.30 presented a ConvNet-based
classifier to distinguish EEG between children with
epilepsy without epileptiform discharges and controls

2150032-2

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

21
.3

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

E
L

FT
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/0
5/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 22, 2021 17:25 2150032

Time–Frequency Representations for ConvNet-Based Epilepsy Diagnosis

Table 1. Recent ConvNet and deep learning studies for EEG-level classification.

Performance metrics
Algorithm/

Reference input shape Classification type Evaluation criteria EEG-level

AUC BAC

Thomas et al.9 (2018) 1D ConvNet with SVM 1 × 64 IED versus non-IED EEG 4-fold CV 0.870 83.86%
Jing et al.8 (2019) SpikeNet (2D ConvNet) 37 × 128 IED versus non-IED EEG 10-fold CV 0.847 —
Roy et al.24 (2019) ChronoNet (RNN) 22 × 15,000 Normal versus abnormal EEG Fixed fold — 86.57%
Peh et al.25 (2021) 1D ConvNet 1 × 150 Slowing versus slow-free EEG LOSO CV 0.851 81.8%

LOIO CV 0.845 82.0%
Thomas et al.10 (2021) 1D ConvNet with IED versus non-IED EEG LOSO CV 0.826 76.10%

Ensemble 1 × 64 LOIO CV 0.812 74.80%

Notes: Input shape (to ConvNet or RNN): Number of Channels×Sample Points.

and achieved a mean accuracy of 80%. These stud-
ies8,9,24,27–30 were evaluated only on datasets from
a single center. The joint scalp-intracranial EEG-
based IED detection studies27–29 were evaluated on
18 subjects only, and the results are inferior to our
IED detection results. In another study, we achieved
an IED false detection rate per minute (FDR/min)
of 0.92 at 90% sensitivity.6 In our recent multi-
center study, we achieved a Leave-One-Institution-
Out (LOIO) cross-validation (CV) Balanced Accu-
racy (BAC) of 75.5% and Leave-One-Subject-Out
(LOSO) CV of 74.8% with ConvNet only system.
We also achieved LOIO BAC of 76.1% and LOSO
BAC of 69.3% with an ensemble of three compo-
nents: ConvNet for detecting IEDs, Template Match-
ing for detecting IEDs, and Spectral features for clas-
sifying EEGs.10 In another multi-center study, Peh
et al.25 proposed an EEG classifier based on slow-
ing and reported an LOIO BAC 82.0% and LOSO
BAC of 81.8%. Marleen et al.31 achieved an AUC of
0.94 with 2D ConvNet for IED detection. In these
five studies,6,8,10,25,30 the ConvNet detector is inves-
tigated with only the preprocessed EEG signal. In
our preliminary study, we proposed a 1D ConvNet
that exploited frequency sub-bands as features for
the detection of IEDs, and we tested it on a dataset
containing 554 EEGs.7 We attain a mean five-fold
IED detection AUC of 0.988 with a false detection
rate per minute (FDR/min) of 0.230 at 90% sensitiv-
ity. None of the aforementioned studies have investi-
gated the effect of noise during training.

To address these shortcomings, we systemati-
cally analyzed the ConvNet-based IED detector sys-
tem on a large dataset (554 subjects, 18,164 labeled

IEDs) recorded at Massachusetts General Hospital,
(MGH)6 with various input features, namely pre-
processed EEG signal, frequency sub-bands, wavelet
transforms, and multiple ConvNet variants, such as
1D ConvNet, 2D ConvNet, and multi-channel (MC)
ConvNet. We also investigated the effect of injecting
additive Gaussian noise at different ConvNet layers
during training. Furthermore, to diagnose epilepsy,
the clinicians may be only concerned with identify-
ing a few highly probable epileptic spikes. There are
only limited studies that attempt to classify normal
EEGs (IED free EEGs without any anomaly) versus
epileptic EEGs (EEGs with IEDs).10 In these con-
texts, we also perform the EEG-level classification
on five different institutions (using IED detection fea-
tures derived from ConvNet) for classifying normal
EEGs from epileptic EEGs. Based on what we know,
this study could likely be the one among the very
few to conduct a cross-institutional assessment. The
proposed IED detector achieves a mean FDR/min of
0.23 for a sensitivity of 90% with 1D ConvNet. The
EEG classifier achieves a best mean LOIO BAC of
78.1% (specificity of 76.2%, and AUC of 0.839) and
LOSO BAC of 79.5% (specificity of 79.0%, and AUC
of 0.856).

The remainder of the paper is divided into
four sections. We describe the clinical scalp EEGs
recorded from multiple centers in Sec. 2.1, and the
preprocessing and methodology followed to extract
the features in Sec. 2.2. In Secs. 2.3 and 2.4, we
explain the design and evaluation of the proposed
IED detection system, respectively. In Sec. 2.4, we
also describe the EEG-level classification pipeline. In
Sec. 3, we present the experimental results, while in
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Sec. 4, we discuss the results, strengths and limita-
tions of the proposed study. In Sec. 5, we present our
conclusions and ideas for future study.

2. Methods

2.1. Clinical scalp EEG datasets

In this study, we consider routine clinical scalp
EEGs from six centers spanning different countries:
MGH (USA), National University Hospital (NUH,
Singapore), National Neuroscience Institute (NNI,
Singapore), TUH (USA),26 Fortis Hospital Mulund
(India), and Lokmanya Tilak Municipal General
Hospital (LTMGH, India). The description about
different datasets are presented in Table 2. Based
on the clinical report, the EEGs are classified into
epileptic EEGs (recorded from epileptic subjects con-
taining IEDs) and normal EEGs (showing no abnor-
malities, recorded from subjects who do not have
epilepsy). None of the EEG reports for the datasets
considered in this study mentions nonepileptic IEDs.
To retain the uniform mean EEG recording length
across all centers, we restricted this study to EEGs
with a recording length of 5–60min. The EEG
recordings were performed according to the stan-
dard 10–20 international system and were captured
with different EEG equipment at various sampling

rates. EEG recordings consisted of predominantly
adult EEGs (age > 20 years). We obtained ethical
approval from the review boards of the respective
centers.

2.2. Data preprocessing and IED
extraction

We followed standard preprocessing techniques to
extract different IED level features from the EEG
recordings. At first, we applied a fourth-order But-
terworth notch filter at 50/60Hz to eliminate power
line interference and a fourth-order 1Hz high-pass
filter to remove DC offset and baseline fluctuations.
Next, we downsampled all the EEGs to 128Hz and
then applied the Common Average Reference mon-
tage to enhance the signal quality. Further, noise
statistics-based artifact rejection technique is applied
to remove high amplitude noise.6 Next, we extract
the IED and background segments (non-IEDs) from
the preprocessed (prep) EEG data to train the
ConvNet-based IED detector.

According to the International League Against
Epilepsy (ILAE), IEDs range between duration
of 0.02–0.2 s.2 Therefore, the IEDs were extracted
as 0.5 s (0.5× 128 = 64 samples) nonoverlapping
segments from epileptic EEGs. The background

Table 2. Description of the six scalp EEG datasets.

Epileptic/nonepileptic

Gender (age in years)
Dataset/ Number of Number of Dataset type/
country subjects EEGs Male Female Unknown Fs (Hz) duration (min)

MGH US 84 93 43 (35.2±27.2) 41 (37.1±28.2) — 128, 200, 256 Private
461 461 — — 461 (31.2±9.8) 28.8±7.1

NUH SG 65 65 32 (50.3±20.2) 33 (56.4±19.7) — 250 Private
99 99 60 (48.8±17.9) 39 (50.9±20.5) — 18.8±9.0

NNI SG 119 119 55 (44.5±19.0) 64 (47.0±21.2) — 200 Private
118 118 60 (44.0±16.8) 58 (51.2±18.4) — 26.7±1.8

TUH US 42 260 12 (61.8±12.7) 30 (59.1±16.0) — 200, 256, 500 Public
30 44 13 (52.3±14.2) 17 (53.2±19.8) — 14.5±7.3

Fortis IN 36 36 25 (37.0±14.7) 10 (38.4±17.4) 1 (25) 500 Private
342 342 185 (48.5±18.1) 147 (47.2±17.3) 10 (41.0±18.5) 20.7±5.5

LTMGH 44 44 26 (51.2±24.3) 18 (46.3±24.7) — 256 Private
IN 626 626 365 (41.0±16.7) 261 (41.4±19.0) — 13.9±1.5

Total 390 617 — — — — —
1676 1691 801.16 h

Notes: All the EEGs contain 19 channel recordings. Fs: sampling frequency. Age/duration are presented as

mean±standard deviation.
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segments were extracted from normal EEGs as
0.5 s segments with 75% overlapping window. We
extracted the background segments only from EEGs
without IEDs. The ConvNet-based IED detectors are
then trained with these 0.5 s single-channel wave-
forms to classify them as IED or non-IED segments.
Information about the various folds is shown in
Table 3. In addition to the prep EEG signals as input
features to the ConvNet-based IED detector, we also
explore other signal representations: frequency sub-
bands (δ, θ, α, β), CWT (db4–db10, scales D1–D5
and A1–A5), and DWT (Morlet and Mexican Hat,
scales 1–10).

2.2.1. Frequency sub-bands

EEG signals can be filtered according to different
frequency bands, providing valuable information for
detecting IEDs. In this study, we applied a Kaiser
window32 based bandpass filter on the preprocessed
EEG recordings, filtering the signals according to the
five frequency bands: delta (δ: 1–4Hz), theta (θ: 4–
8Hz), alpha (α: 8–13Hz), and beta (β: 13–30Hz).
The bandpass filter is initially designed by the
Matlab R2019b function, bandpass(X, Fpass, Fs),
where X is the input signal, Fpass is the pass-
band frequency range, and Fs is the sample rate of
the input signal. After applying the bandpass filter
according to different frequency bands on the entire
EEG signal, we extracted 0.5 s segments from each
of the filtered signals. The use of 1Hz fourth-order
high-pass filter during data preprocessing attenuates
the delta band slightly; however, the filter is essential
in removing baseline wander.

2.2.2. Discrete wavelet transforms

The DWT decomposes the input signal into various
approximate and detailed coefficients to investigate
the data at different frequencies and time interval
windows. DWT utilizes wavelet and scaling functions
related to highpass filters (HPF) and lowpass filters
(LPF). The signal is deconstructed into different fre-
quencies by consecutive HPF and LPF of the input
signal. The input signal x[i] is fed into a half-band
HPF h[i] and LPF l[i]. According to the Nyquist law,
half of the samples can be discarded after filtering.
Therefore, the signal can be sub-sampled by a factor
of 2, just by dropping every alternative sample. This
represents one decomposition step.

Table 3. MGH 5-fold cross-validation data distribu-
tion.

Epileptic Nonepileptic Annotated IED
Fold EEGs EEGs IEDs events

1 19 92 4077 2920
2 19 92 3571 2757
3 18 92 3207 2831
4 19 92 4021 2781
5 18 93 3288 2881

Total 93 461 18,164 14,170

It is crucial to choose a mother wavelet that
resembles IEDs. In this study, we applied the
Daubechies family from db4 to db10 as they have a
strong correlation to IEDs. For each candidate IED
and non-IED of 500ms (64 samples), DWT was per-
formed to extract the feature vectors. Following the
literature,15 we extract coefficients from levels 1 to
5, corresponding to frequencies from 0Hz to 128Hz.
Level 1 decomposition corresponds to 0–64Hz and
64–128Hz for approximate and detailed coefficients,
respectively. Level 2 decomposition corresponds to
the frequency range of 0–32Hz and 32–64Hz for
approximate and detailed coefficients, respectively,
and so on. This procedure resulted in coefficient vec-
tors of different lengths at each level. To obtain coef-
ficient vectors of the same length, we resample each
vector into a 64-dimensional vector by 1D linear
interpolation. In Fig. 1, we depict the detailed and
approximated coefficients of level-5 wavelet.

2.2.3. Continuous wavelet transforms

The CWT measures the similarity (inner-product)
between a signal and an analyzing function. In this
study, we examined the Mexican hat and Morlet
wavelets, which reflect the morphological charac-
teristics of the original IEDs.18,20 From each IED
and non-IED segment of 500ms (64 samples), we
extracted CWT coefficients at ten scales (from 1 to
10). This procedure resulted in coefficients of differ-
ent lengths at each level. Next, we resample the coef-
ficients at each level to obtain a vector of length 64.
The wavelet scales of a randomly selected IED and
non-IED segment are shown in Fig. 1. The wavelet
scales and corresponding frequency at each scale
are listed in Table 4. The scales correspond to dif-
ferent frequencies for the Mexican hat and Morlet
wavelet due to the fundamental difference in mother
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Fig. 1. db4 and Mexicant hat wavelet coefficients (mag-
nitude) for IED and background segments.

Table 4. CWT scales and the corresponding fre-
quencies.

No. Scale Morl frequency Mexh frequency

1 0.016 61.115 16.105
2 0.022 43.591 11.487
3 0.031 31.092 8.193
4 0.043 22.177 5.844
5 0.06 15.818 4.168
6 0.085 11.282 2.973
7 0.119 8.047 2.121
8 0.166 5.740 1.513
9 0.233 4.094 1.079

10 0.327 2.92 0.769

Notes: morl: Morlet Wavelet; mexh: Mexican Hat

Wavelet.

wavelets. Therefore, we have also investigated the
scales (from 4 to 10) that contain frequency com-
ponents below gamma band and high clinical rele-
vance.33 We also select Morlet scales from 5 to 10
and Mexican hat scales from 1 to 6 as they trans-
late to similar frequency range. The workflow of the
proposed approach is shown in Fig. 2.

2.3. ConvNet-based IED detector

We trained the IED detectors to estimate the prob-
ability of 0.5 s waveforms being an IED, whereas the
EEG classifiers are built on features derived from

IED detectors. We take the maximum of the out-
put from 19 channels to merge the 19 IED detec-
tor predictions (for each channel) into one final out-
put for each 0.5 s time segment. We extract the IED
rate per minute for each EEG at various prediction
thresholds. The EEG classifiers are built on these
IED rates.

Along the lines of the ConvNet architecture sug-
gested by Thomas et al.,6 we develop the 1D Con-
vNet IED detector. To create the feature maps for
1D ConvNet and 2D ConvNet, we initially utilize 1D
and 2D convolutionary filters. Then, we adopt the

Fig. 2. Overall workflow of the ConvNet IED detector
and EEG classifier. The proposed 1D ConvNet archi-
tecture has two convolutional, pooling and fully con-
nected layers with multiple input features. During train-
ing, Gaussian noise is added to the last fully connected
layer, before the softmax function.
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activation function of rectified linear units (ReLU)
to solve the issue of vanishing gradients and max-
pooling for reduction of dimensionality. Next, the
pooled feature maps are flattened into a single long
vector and passed into a dense layer or fully con-
nected layer (FC). The softmax is applied as the last
activation function to normalize the FC outputs to
0 and 1, with predicted probability output ‘1’ point-
ing to an IED. A representation of the ConvNet IED
detector is depicted in Fig. 2.

We balanced the ConvNet training by maintain-
ing an identical number of IED and background seg-
ments in each batch. We implemented dropout (with
dropout rate set to 0.5) on each of the dense lay-
ers during the ConvNet training to eliminate the
high variance issue. We selected the training samples
randomly in batches. We specifically include non-
IED waveforms in the training set that are wrongly
labeled as IED in the first round of classification,
as proposed by Thomas et al.6,9 The optimal Con-
vNet hyperparameters are selected by performing
Cross-Validation on the training data. The network
is trained for each fold until the iteration at which the
validation loss becomes minimal, which is the early
stopping criterion. Table 5 summarizes the different
parameter values and ranges evaluated for optimiz-
ing the ConvNet. The ConvNet was executed in Ten-
sorflow 1.5.1.34

We investigate different types of ConvNet,
followed by the data augmentation with noise

injection.

• One-dimensional (1D) ConvNet: We evaluate the
1D ConvNet with different combinations of fea-
tures: prep EEG, sub-bands, CWT, and DWT.
We stack the different 64 sample feature coeffi-
cients extracted beside one another horizontally,
leading to a long 1D vector. The input to the 1D
ConvNet with multiple features is of dimension
R1×(64×Nf )×1 where Nf represents the number of
different features fed into the ConvNet.

• Two-dimensional (2D) ConvNet: Similarly as 1D
ConvNet, the 2D ConvNet is built with differ-
ent feature combinations. However, the significant
differentiator is that instead of appending addi-
tional features horizontally, they are stacked ver-
tically, making the input a 2D matrix. This con-
figuration enables the ConvNet filters to leverage
both temporal and spectral features simultane-
ously. The input to the 2D ConvNet has a dimen-
sion of RNf×64×1.

• Multi-channel (MC) ConvNet: For MC ConvNet,
instead of stacking different 64 sample features
horizontally or vertically, we append them as addi-
tional channels mimicking RGB image where each
color is represented as a separate channel. This
generates multiple feature maps during convolu-
tion, which are then added up into one final fea-
ture map. The input to this MC ConvNet will have
dimension of R1×64×Nf .

Table 5. Hyperparameters evaluated for optimizing the ConvNet IED detector.

Parameters Range/values

Number of convolution and pooling layers 1, 2, 3, 4
Number of fully connected layers 1, 2, 3
Number of convolution filters 32, 64, 128, 200
Dimension of convolution filters Df ∈ {3, 5, 7} 1 × Df × 1 (1D)

Df × Df × 1 (2D)
1 × Df × Df (MC)

Number of hidden layer neurons 512, 128, 64
Activation function ReLU
Dropout rate 0.5
Maximum number of iterations 20,000
Optimizer Adam

Learning rate 10−4

Loss function Cross-entropy

Weights initialization Xavier35

Layers trained with Gaussian noise Input layer, FC1, FC2, before softmax
Gaussian noise, σ 0.001, 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10
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• ConvNet with noise injection: The IED detector
should be capable of handling input signals with
perturbations. Neural networks are proven not to
be very robust to noise. One way to improve the
robustness of the neural network is to train them
with random noise applied to their input or hid-
den units or at the output level.22 Noise injection
can be seen as augmenting the data at multiple
levels of abstraction. Provided that the magni-
tude of the noise is carefully tuned, this approach
can be highly effective. The most prevalent kind
of noise adopted during the training of machine
learning algorithms is injecting Gaussian noise to
input variables, with zero mean and a given vari-
ance.23 The amount of noise injected (standard
deviation) is a configurable hyperparameter. Very
low noise has no effect, whereas very high pertur-
bation makes the mapping function too challeng-
ing for the network to learn. Noise is only added
during training. Although injecting noise to the
input signal is the most well-known and broadly
contemplated approach, we added noise at differ-
ent layers (input, convolutional, fully connected,
and output layer). The proposed data augmenta-
tion approach with noise at the output layer is
shown in Fig. 2.

2.4. Performance assessment

2.4.1. IED detection: 5-fold CV on MGH
dataset

The IED detectors are trained with different input
features (prep signal, frequency sub-bands, CWT
coefficients, and DWT coefficients) and various Con-
vNet architectures. Then, we compare the perfor-
mance of the different IED detectors by carrying
out 5-fold CV on the annotated EEGs from MGH,
where four folds are allocated for training and one
for testing. We split the MGH dataset into five folds
(see Table 3), more or less matching distribution of
labeled IEDs, gender, and age. We split the folds
in the same way as reported by Thomas et al.6 We
assign all the EEG recordings from the same sub-
ject into the same fold to ensure that EEG record-
ings of the same subject be either in testing or
training at any given time. We evaluate the per-
formance of the IED detectors based on four met-
rics: AUC, AUPRC, PPV, and FDR/min. Since the
two classes are highly disproportional (background

to IED segments ratio is around 1000:1), area-related
metrics such as area under the precision-recall curve
(AUPRC) and AUC could be deceiving. Considering
this, we investigate the FDR/min for preset sensitiv-
ity values. The results reported are averages com-
puted from 5-fold CV and, therefore, tend to be
robust against stochasticity.

2.4.2. EEG classification: LOIO and
LOSO CV

Next, we evaluate the efficiency of EEG classifier
based on features extracted from IED detector. This
is a two-stage process. In the first stage, we train,
optimize, and evaluate the IED detector (ConvNet-
based IED detectors with various input features
and ConvNet architectures). In the second stage,
we extract feature from EEGs based on the Con-
vNet IED detector, train the EEG classifier, find the
best ConvNet threshold based on BAC on the train-
ing set, and analyze the performance of the EEG
classifier.

In order to evaluate the datasets from differ-
ent centers, we train and validate (to determine
the stopping criteria and best hyperparameters) the
ConvNet-based IED detectors on all five folds of
MGH dataset. The model with minimal validation
error is selected for further evaluation. We conduct
the multi-center EEG classification in two ways, as
illustrated below.

We conduct the LOIO CV by omitting the
dataset from a target institution completely. We
train the EEG classifier on the remaining institutions
and test on the EEG dataset from the left-out center
(see Fig. 3). To avoid class imbalance in any dataset
during training, we randomly choose the same num-
ber of EEG recordings from each institution and
merge them together. The maximum EEGs we select
from each dataset is configured as the minimum of
normal/epileptic EEG recordings available across all

Fig. 3. LOIO and LOSO CV process on multiple
datasets.
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institutions to avoid institutional bias. During LOIO
CV, we examine the EEGs from LTMGH only during
testing, since EEGs from LTMGH are captured from
nonstandard medical devices. We present the most
widely used performance evaluation metrics, includ-
ing AUC, BAC, and specificity.10

While performing the LOSO CV on each dataset
separately, the classifier is trained by leaving an EEG
and testing on the left out EEG (see Fig. 3). Finally,
we consolidate and present the aggregated results.
We report BAC and specificity at 80% sensitivity.
When performing LOIO and LOSO CV assessments,
the IED detectors are built on the entire MGH
dataset, and they remain fixed across all the insti-
tutions. We utilize the training fold on EEG-level to
develop the threshold-based-IED module and opti-
mize the ConvNet threshold at which IED rates are
extracted. For both LOIO and LOSO CV, we run
100 experiments in order to address the stochasticity
introduced by random selection of training samples.

3. Results

3.1. 5-Fold CV on MGH dataset

We applied 5-fold CV on EEGs from MGH to
assess the performance of 1D ConvNet IED detec-
tion system with different configurations of input fea-
tures. The evaluation results are listed in Table 6.
The input configurations are presented in Table 6,
columns 1 to 4. Input features ‘prep EEG’ represents
IED detector with only time-series EEG segments,
‘prep EEG, δ, θ, α, β’ represents IED detector with
time-series EEG segment along with frequency sub-
bands, configuration ‘prep EEG, db4 (A1–A5, D1–
D5) represents the IED detector with a combination
of time series, and db10 approximate and detailed
coefficients from level 1 to 5, and so on.

The IED detector performance is measured on
the basis of mean FDR/min and precision at 90%
sensitivity. The 1D ConvNet IED detector based on
various frequency bands (prep EEG, δ, θ, α, β) and
DWT-based coefficients (prep EEG, db10 (A1–A5,
D1–D5)) provided the best overall results. The 1D
ConvNet with prep EEG as features achieved a mean
FDR/min of 0.36 and a precision of 0.748 and will
act as a baseline. The 1D ConvNet with multiple fea-
tures based on prep EEG and frequency bands (δ, θ,
α, β) achieved a mean FDR/min of 0.230 and a pre-
cision of 0.790. With prep EEG, and db10 (A1–A5,

D1–D5), the system achieved a mean FDR/min of
0.262 and a precision of 0.799. This illustrates that
carefully selected multiple features such as frequency
bands and wavelets, coupled with time-series signal,
are useful to avoid false positives in IED detection.
The sensitivity versus FDR/min plot for the best
features from each family (prep EEG, sub-bands,
DWTs, and CWTs) is displayed in Fig. 4. With the

Fig. 4. Sensitivity versus FDR/min for the best fea-
tures from each family (prep EEG, sub-bands, DWTs,
and CWTs).

Fig. 5. ConvNet activations before the fully connected
layer and predicted outputs for IED, non-IED and chal-
lenging non-IED inputs to 1D ConvNet with prepro-
cessed EEG (first rows) and 1D ConvNet with prepro-
cessed EEG, δ, θ, α, β (second rows).
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combination of best features from each family (prep
EEG, sub-bands, DWT, and CWT), we achieved an
FDR/min of 0.297.

We selected the best performing feature combina-
tion (prep EEG, δ, θ, α, β) and evaluated them with
different ConvNet types, namely 1D ConvNet, 2D
DNN, and MC ConvNet. 2D ConvNet and MC Con-
vNet achieved a mean FDR/min of 0.270 (precision
of 0.770) and 0.320 (precision of 0.760), respectively.
Although all 3 ConvNet types performed better than
the baseline, the 1D ConvNet IED detector trained

on multiple frequency sub-bands surpassed the 2D
ConvNet and MC ConvNet. We compared the con-
tribution of neurons before the fully connected layer
of the best performing ConvNet IED detector system
(see Fig. 5). We observed that the preprocessed sig-
nal contributed the most, followed by other sub-band
components.

We trained the 1D ConvNet with prep EEG with
Gaussian noise at different layers (input, FC1, FC2,
and output layer) and different standard deviation
values. Their results are presented in Table 7. The

Table 6. IED detection results for different ConvNet input feature configurations.

Performance measures

Input dim Rx×y×z 1D ConvNet input features AUC AUPRC Precision FDR/min

1×64×1 prep EEG 0.987 0.876 0.748 0.353
1×320×1 prep EEG, δ, θ, α, β 0.988 0.902 0.790 0.230
1×320×1 db4 (D1–D5) 0.986 0.888 0.747 0.359
1×320×1 db5 (D1–D5) 0.988 0.887 0.733 0.38
1×320×1 db6 (D1–D5) 0.988 0.871 0.723 0.395
1×320×1 db7 (D1–D5) 0.987 0.885 0.729 0.399
1×320×1 db8 (D1–D5) 0.986 0.895 0.744 0.367
1×320×1 db9 (D1–D5) 0.987 0.877 0.712 0.419
1×320×1 db10 (D1–D5) 0.987 0.89 0.733 0.389
1×384×1 prep EEG, db4 (D1–D5) 0.984 0.895 0.76 0.336
1×384×1 prep EEG, db5 (D1–D5) 0.988 0.895 0.766 0.32
1×384×1 prep EEG, db6 (D1–D5) 0.986 0.901 0.781 0.292
1×384×1 prep EEG, db7 (D1–D5) 0.987 0.89 0.75 0.352
1×384×1 prep EEG, db8 (D1–D5) 0.987 0.897 0.768 0.321
1×384×1 prep EEG, db9 (D1–D5) 0.987 0.891 0.767 0.317
1×384×1 prep EEG, db10 (D1–D5) 0.986 0.897 0.781 0.295
1×640×1 db4 (D1–D5, A1–A5) 0.988 0.893 0.755 0.342
1×640×1 db5 (D1–D5, A1–A5) 0.989 0.889 0.749 0.35
1×640×1 db6 (D1–D5, A1–A5) 0.988 0.897 0.757 0.338
1×640×1 db7 (D1–D5, A1–A5) 0.988 0.874 0.742 0.364
1×640×1 db8 (D1–D5, A1–A5) 0.985 0.9 0.77 0.315
1×640×1 db9 (D1–D5, A1–A5) 0.988 0.897 0.783 0.29
1×640×1 db10 (D1–D5, A1-A5) 0.986 0.897 0.764 0.319
1×704×1 prep EEG, db4 (D1–D5, A1–A5) 0.988 0.896 0.764 0.319
1×704×1 prep EEG, db5 (D1–D5, A1–A5) 0.986 0.893 0.747 0.358
1×704×1 prep EEG, db6 (D1–D5, A1–A5) 0.988 0.907 0.768 0.32
1×704×1 prep EEG, db7 (D1–D5, A1–A5) 0.987 0.885 0.754 0.341
1×704×1 prep EEG, db8 (D1–D5, A1–A5) 0.988 0.878 0.746 0.356
1×704×1 prep EEG, db9 (D1–D5, A1–A5) 0.987 0.9 0.792 0.272
1×704×1 prep EEG, db10 (D1–D5, A1–A5) 0.984 0.907 0.799 0.262
1×384×1 mexh (1–6) 0.986 0.869 0.665 0.558
1×448×1 prep EEG, mexh (1–6) 0.985 0.893 0.722 0.428
1×704×1 prep EEG, mexh (1–10) 0.987 0.88 0.712 0.432
1×448×1 prep EEG, morl (5–10) 0.989 0.885 0.72 0.394
1×512×1 prep EEG, morl (4–10) 0.989 0.891 0.74 0.359
1×704×1 prep EEG, morl (1–10) 0.988 0.865 0.65 0.595

Notes: Precision and FDR/min are reported for 90% sensitivity.
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Table 7. IED detection results for 1D ConvNet with prep EEG trained with Gaussian noise at different layers and
different standard deviations.

ConvNet layers trained
with Gaussian Noise FDR/min for sensitvity =90%

For Gaussian noise, σ =
0.001 0.003 0.005 0.01 0.02 0.03 0.04 0.05 0.1

Input layer 0.367 0.373 0.375 0.389 0.341 0.374 0.367 0.363 0.344
FC1 0.408 0.347 0.340 0.360 0.370 0.369 0.393 0.359 0.425
FC2 0.425 0.367 0.377 0.364 0.390 0.344 0.336 0.423 0.398
Before softmax 0.357 0.390 0.368 0.325 0.335 0.392 0.426 0.332 0.355
FC2, before softmax 0.336 0.360 0.370 0.367 0.343 0.351 0.366 0.361 0.402
FC1, FC2, before softmax 0.365 0.331 0.394 0.353 0.376 0.329 0.368 0.367 0.330
Input layer, FC1, FC2, before softmax 0.410 0.355 0.368 0.389 0.341 0.374 0.367 0.363 0.344

1D ConvNet with prep EEG trained with Gaussian
noise at the output layer (before softmax) with σ

= 0.01 attained a mean FDR/min of 0.32, perform-
ing better than 1D ConvNet without any data aug-
mentation. This illustrates that conscientiously cho-
sen noise parameters help to minimize FDR/min in
IED detection. The additional parameters besides
the range/values mentioned in Table 5 did not
improve the EEG level classification, and as the

computational complexity of tuning, all those param-
eters become unwieldy, we ignored those parameters
in further analysis.

3.2. LOIO and LOSO CV

We selected the best ConvNet IED detector type
and input feature combination based on IED detec-
tion results (FDR/min). The particular ConvNet is

Fig. 6. LOIO and LOSO CV (AUC and BAC) for the five datasets for various ConvNet thresholds and input features: (a)
LOIO AUC, (b) LOSO AUC, (c) LOIO BAC, and (d) LOSO BAC.
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Table 8. LOIO and LOSO CV results for multiple institutions (AUC and BAC) with features extracted from 1D
ConvNet-based IED detector.

LOIO CV LOSO CV
Data augmentation

ConvNet input features Gaussian noise AUC BAC (specificity) AUC BAC (specificity)

prep EEG — 0.811 75.0%±5.0 (70.0) 0.827 75.2%±5.4 (70.4)
prep EEG σ = 0.01 0.817 75.3%±4.5 (70.6) 0.832 75.9%±5.0 (71.8)
prep EEG, δ, θ, α, β — 0.838 77.3%±5.8 (74.6) 0.855 78.1%±5.4 (76.2)
prep EEG, δ, θ, α, β σ = 0.01 0.839 78.1%±6.3 (76.2) 0.856 79.5%±6.3 (79.0)
prep EEG, db10 (D1–D5, A1–A5) — 0.827 76.1% ±3.6(72.2) 0.836 76.9%±4.1 (73.8)
prep EEG, db10 (D1–D5, A1–A5) σ = 0.01 0.828 76.1% ±3.8 (72.0) 0.844 77.1%±5.4 (74.2)
prep EEG, morl (4–10) — 0.818 75.4%±6.7 (70.9) 0.800 71.7%±6.6 (63.4)
prep EEG, morl (4–10) σ = 0.01 0.827 76.1%±6.2 (72.2) 0.800 70.1%±6.4 (60.2)

Notes: BAC and Specificty are reported for 80% sensitivity.

chosen based on the lowest validation loss during
ConvNet training. The mean AUC, BAC, and speci-
ficity results for the different datasets and eight input
configurations applied for a fixed 1D ConvNet for 100
random instances of EEG classification are summa-
rized in Table 8. The consolidated evaluation results
on five institutions show that the ConvNet-based
IED detector trained on various features (sub-bands
or DWT) performed better than the ConvNets that
operate directly on the prep EEG signals. The mean
LOIO CV and LOSO CV results obtained for five
different institutions at various ConvNet thresholds
are shown in Fig. 6.

The 1D ConvNet trained on prep EEG achieved
a mean LOIO CV BAC of 75.0% (AUC of 0.811),
and LOSO CV BAC of 75.2% (AUC of 0.827), which
will be our baseline. For the best system configu-
ration, the suggested workflow has attained a mean
LOIO CV BAC of 78.1% (AUC of 0.839) and LOSO
CV BAC of 79.5% (AUC of 0.856). The combina-
tion of the preprocessed signal with frequency bands
together with Gaussian noise at the output layer per-
formed the best. From Fig. 6 and Table 8, we see that
the suggested pipeline generalizes effectively across
multiple datasets.

4. Discussion

4.1. IED detection: Comparison
of system configurations

The ConvNet with prep EEG, δ, θ, α, β and prep
EEG, db10 (A1–A5, D1–D5) achieved better per-
formance than other combinations of 1D ConvNet
systems for detecting IEDs. The ConvNet with prep

EEG, δ, θ, α, β delivered the best FDR/min of
0.230 (AUPRC of 0.902) followed by ConvNet with
prep EEG, db10 (A1–A5, D1–D5) with FDR/min
of 0.26 (AUPRC of 0.9) at 90% sensitivity. The
ConvNet with prep EEG achieved an FDR/min of
0.353 (AUPRC of 0.876), lower performance than
ConvNet trained on prep EEG with sub-band or
db10 wavelets. ConvNet, based on both continuous
wavelets (Mexican and Morlet) with scales from 1 to
10, leads to the lowest performance. By training the
ConvNet only with prep EEG and Morlet scales 4
to 10 that contain frequency components of clinical
interest,33 we achieved an FDR/min of 0.359, similar
to ConvNet trained with prep EEG.

As there is substantial variation in the IED mor-
phology across patients and within the EEGs of the
same patient, the IEDs might not be correlating well
with the wavelet families we have evaluated. More-
over, wavelets might be more sensitive to certain
types of artifacts. As the 1D ConvNet (input dimen-
sion: R1×320×1) with prep EEG combined with sub-
bands (δ, θ, α, β) provided the best IED detection
results when compared to DWT- and CWT-based
features, we investigated the prep EEG, δ, θ, α, β

features with different ConvNet input combination,
namely 2D ConvNet (input dimension: R5×64×1) and
MC ConvNet(input dimension: R1×64×5). Both 2D
ConvNet and MC ConvNet performed worse than
1D ConvNet with multiple features. As the feature
representations are not extracted in a fixed linear
range, the 2D or MC convolutional filters might be
ineffective in capturing the additional information.
However, irrespective of the ConvNet type, ConvNet
(1D ConvNet, 2D ConvNet, or MC ConvNet) with

2150032-12

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

21
.3

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

E
L

FT
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/0
5/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 22, 2021 17:25 2150032

Time–Frequency Representations for ConvNet-Based Epilepsy Diagnosis

multiple sub-bands consistently outperformed 1D
ConvNet with prep EEG in terms of AUPRC, preci-
sion, and FDR/min. This shows that utilizing various
EEG frequency bands improves the IED detection by
reducing FPs, similar to what has been reported in
an earlier study.7 The 1D ConvNet with prep EEG
and Gaussian noise of σ = 0.01 at the output layer
during training performed better than other combi-
nations of noise and achieved an FDR/min of 0.325
at 90% sensitivity and AUPRC of 0.888. When the
noise is added at FC1, FC2 and output layer with
σ = 0.03 and 0.1, we achieved an FDR/min of 0.329
and 0.330, respectively. This shows that noise injec-
tion could potentially improve the overall system
performance.

We can observe the contribution of neurons
before the fully connected ConvNet layer (after
max-pooling from the second convolutional layer) in
Fig. 5. For the IED segments, the neurons before
the fully connected layer are highly active in the
prep EEG band, accompanied by other sub-bands.
Several neurons have high activities, thereby leading
effectively to the detection of the IEDs. However, for
non-IEDs, most of the neurons before the fully con-
nected layer are dormant, thereby predicting the seg-
ment as non-IED. On the other hand, a non-IED or
an IED-like artifact could quickly produce high neu-
ronal activity in the prep EEG part before the fully
connected layer, hence causing the prep EEG signal-
based IED detector to misclassify them as potential
IED segments. As our proposed system incorporates
information from multiple features, neurons in the
sub-bands exhibit minimal activity during convolu-
tion, thereby giving additional valuable information
to the neurons in the fully connected layers to make
proper voting on the final prediction. This supple-
mentary information, which is not so evident in the
full-spectrum EEG data, aids in the successful detec-
tion of challenging background segments and arti-
facts.

4.2. EEG classification: Comparison
of system configurations

We have implemented an automated diagnostic sys-
tem for epilepsy and have tested it on routine clin-
ical EEGs recorded from multiple institutions. We
analyzed the system in two ways: LOIO CV and
LOSO CV. The proposed approach generalizes well
across datasets from different centers. Hence, they

are expected to perform well on datasets from centers
that did not participate in this study. The proposed
1D ConvNet-based multi-feature system is evalu-
ated on the dataset from five distinct centers and
has attained a mean LOIO BAC of 78.1% (AUC of
0.839) and LOSO BAC of 79.5% (AUC of 0.856). In
terms of absolute numbers, we have correctly classi-
fied 73 and 93 additional EEGs in LOIO and LOSO,
respectively, compared to baseline. The system pro-
posed in this study yields high classification accuracy
across a wide range of ConvNet thresholds applied to
derive ConvNet IED rates for EEG level classifica-
tion. This enables the clinicians to set different oper-
ating points (thresholds) to extract ConvNet IED
rates by making a trade-off between high sensitivity
and FDR/min on the IED level and high BAC on
the EEG level.

4.3. Comparison with the
state-of-the-art literature

The inter-rater agreement (IRA) reported for classi-
fying epileptic EEGs are 80.9%,36 77.0%,37 74.0%,38

and 88.6%39 in the current literature (see Table 6
from Thomas et al.10). IRA reported by Piccinelli
et al. is performed only on pediatric patients with
idiopathic epilepsy. The proposed approach obtained
an LOIO CV BAC of 78.1% and LOSO CV BAC of
79.5%, which is in good accordance with the IRA
of human experts.10 The efficiency of EEG clas-
sification across various centers (LOSO CV BAC)
achieved in our cross-institutional analysis is supe-
rior to those described in the previous works, and
the proposed system is reaching human-level per-
formance. The majority of the EEG classification
studies in the literature have one or more of the
following limitations: performed on the homogenous
datasets, performed by experts with similar training
or from the same center, analyzed on idiopathic gen-
eralized epilepsy of childhood, and EEG with seizures
that is easier to detect than EEG with IEDs or
between seizures. In our recent multi-center study,10

we achieved a LOIO CV BAC of 75.5% (specificity of
71.0%) and LOSO CV of 74.8% (specificity of 69.6%)
with ConvNet feature-based EEG classification sys-
tem. This study has achieved up to 4.3% improve-
ment in BAC (8.6% improvement in specificity). The
majority of the studies focus on one specific type
of feature and ignore the potential of data augmen-
tation. Deep ConvNets rely heavily on big data to
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prevent overfitting, but big data is scarce in the field
of EEG analysis. Data augmentation techniques40

such as neural style transfer learning,41 feature space
augmentation, noise boosting, generative adversarial
network (GAN)42 have not been extensively studied
for the problem of EEG classification. This would be
an interesting direction to pursue in the future.

It takes about 10min to train the CNN IED
detector on a GPU. The computational time of the
proposed system for evaluating an EEG is shown in
Fig. 7. The proposed system approximately takes
4.5±0.07 s for preprocessing and 0.75±0.01 s on a
CPU+GPU system for the ConvNet IED detector
to evaluate a 19-channel 30-min scalp EEG collected
at a sampling rate of 128Hz. On the other hand, it
takes around 12.0 ± 0.11 s for evaluation on a CPU
only system. It takes about 10mins for an expert
to review a similar routine scalp EEG recording. On
the other hand, our IED detection and EEG clas-
sification system can evaluate the EEG in few sec-
onds, providing invaluable information to the neurol-
ogists, thus proving to be an effective tool for epilepsy
diagnosis. The assessment was carried out in Python
v3.5, on a Nvidia GeForce GTX 1080 Ti GPU and
Intel(R) Xeon(R) Processor E5-2630 v4 CPU. As the
IED detectors are developed to predict the wave-
forms at channel level, the recommended framework
is generalizable to clinical scalp EEG recorded with
arbitrary number of channels. This has a potential
significance in the realm of wearable devices used for
continuous health monitoring, especially to detect

Fig. 7. Computational time for evaluating a 19-channel
30-min EEG recorded at 128 Hz.

and diagnose epilepsy. Defective or EEG channels
with low signal-to-noise ratio can also be discarded
when detecting IEDs.

4.4. Limitations of the study

The study has a few limitations. First, the study
does not leverage spatial information when combin-
ing information from multiple channels. Second, the
IEDs applied to build the IED detector are labeled
by clinicians from the same center. Third, data aug-
mentation techniques such as GAN and noise boost-
ing are not extensively studied. Finally, this study is
mainly focused on identifying epilepsy based only on
interictal IED events.

5. Conclusion

We have developed a generalized epileptic EEG diag-
nostic tool that efficiently detects IED patterns. We
have cross-validated the proposed system on six insti-
tutions and attained a mean LOIO CV BAC of
78.1% (AUC of 0.839) and LOIO CV BAC of 79.5%
(AUC of 0.856). Hence, the recommended EEG clas-
sification pipeline could serve as an invaluable tool
to assist clinicians in the rapid analysis of EEGs
with epilepsy. This system could also be employed to
monitor the effects of antiepileptic drug administra-
tion on the characteristics of interictal epileptiform
events.

We could interpolate the EEG signals as a 2D
image grid in the ConvNet, independent of the num-
ber of channels. We can also improve the IED detec-
tor performance and reach the human-expert IRA by
training it with more labeled quality data collected
from multiple centers and several neurologists. Once
the automated system reaches the IRA for epilep-
tic EEG interpretation, the system can be consid-
ered clinically more viable. Noise injection and other
forms of data augmentation and regularization is an
important field that it merits its own separate study.
This study can be extended to detect ictal events and
other abnormalities in both routine EEG and ambu-
latory and critical care EEG. Although the primary
epilepsy diagnostics for routine clinical scalp EEG
is typically based on IED, other potential epilepsy
linked features of EEG such as seizures, HFOs, slow-
ing, and PLEDs can be extensively investigated in
the future to identify epilepsy.
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Appendix A . Acronyms

Table A.1. Acronyms.

EEG Electroencephalogram
IED Interictal epileptiform discharge
ConvNet Convolutional neural network
CV Cross-validation
AUC Area under the curve
AUPRC Area under Precision-Recall curve
ROC Receiver operating characteristics
FP False Positive
BAC Balanced accuracy
LOSO Leave-one-subject-out
LOIO Leave-one-institution-out
1D/2D One-/two-dimensional
MC Multi-channel
MGH Massachusetts General Hospital
NUH National University Hospital
NNI National Neuroscience Institute
TUH Temple University Hospital
LTMGH Lokmanya Tilak Municipal General Hospital
db Daubachies
mexh Mexican Hat
morl Morlet
prep Preprocessed
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