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Abstract
When does the complex product of a given number of subsets of a group generate
the same subgroup as their union? We answer this question in a more general form
by introducing HS-stability and characterising the HS-stable involution subsemigroup
generated by a subset of a given involution semigroup. We study HS-stability for the
special cases of regular ∗-semigroups and commutative involution semigroups.

Keywords Involution semigroup · Complex product · Hermitian square · HS-stability

1 Motivation

The direct inspiration for this paper was the following question:

Problem 1.1 Let G be a group. Which subsets S of G satisfy 〈S−1S〉 = 〈S〉?
This question arose naturally in the context of invariance groups, minors, and recon-
structibility of certainmultivariate functions (see Proposition 4.4.15 and Problem4.6.1
in [7] and Problem 7.2, Lemma 6.2, and Sect. 6 in [8]).

Of course, it is clear that the inclusion 〈S−1S〉 ⊆ 〈S〉 always holds, but the converse
does not, as the following example shows:
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Example 1.2 Let Sn be the symmetric group of degree n ≥ 2 and let S be a nonempty
subset of Sn that contains only odd permutations. Since the inverse of an odd permu-
tation is odd, S−1S contains only even permutations, so 〈S−1S〉 must be a subgroup
of the alternating group An . However, 〈S〉 contains also odd permutations because the
generators are odd, so the inclusion 〈S−1S〉 ⊂ 〈S〉 must be proper.

We found that this problem has the following rather satisfying solution (which will
turn out to be an immediate consequence of Proposition 3.3):

Corollary 1.3 A nonempty subset S of a group G satisfies 〈S−1S〉 �= 〈S〉 if and only if
S is contained in a nontrivial left coset of a proper subgroup of G, i.e., there exists a
g ∈ G and a proper subgroup G ′ of 〈S〉 such that S ⊆ gG ′.1

We quickly realised that the methods needed to solve this problem make but little
use of the properties of groups, so we turned our attention to the following very natural
generalisation of the original problem:

Problem 1.4 Let S be an involution semigroup. For which subsets S1, . . . , Sn of S do
we have 〈S1S2 . . . Sn〉 = 〈S1 ∪ S2 ∪ · · · ∪ Sn〉?
In this form, the problem proved too hard for us. It turns out that the vital ingredient
which makes Problem 1.1 doable and Problem 1.4 very hard is HS-stability (which
we will introduce in Sect. 3). If, in Problem 1.4, we consider not the involution semi-
group generated by S1, . . . , Sn but the HS-stable involution semigroup generated by
S1, . . . , Sn , a characterisation very much like that in Corollary 1.3 is possible (cf.
Proposition 3.3). It will turn out that, for groups, HS-stability is a trivial concept and
our general characterisation will yield Corollary 1.3 as a special case.

The later sections of this paper are dedicated to an attempt at understanding the
concept of HS-stability. We obtain a necessary condition for an involution semigroup
to be HS-simple, i.e., for it to have no proper HS-stable involution subsemigroup, in
terms of group morphic images (see Sect. 4). We characterise the HS-stable involution
semigroup generated by a given subset of an involution semigroup (see Sect. 5) and
showcase this result in the particular cases of regular ∗-semigroups and commutative
involution semigroups (see Sects. 6 and 7, respectively).

We conclude the paper with a brief coda, Sect. 8, in which we consider Problem 1.4
for semilattices. The tools of Sect. 3 are of little use when dealing with semilattices
because they are HS-simple (see Corollary 5.2), but the problem can be solved without
much difficulty in a different way.

2 Preliminaries

We assume the reader is familiar with the fundamentals of semigroup theory. In this
section we recall a few notions that will be used throughout the paper. For general
background and additional information on semigroups, we refer the reader to the
monograph of Howie [5].

1 Recall that the trivial coset of a subgroup is that subgroup itself. It is a well-known fact that every left
coset of a proper subgroup of a group is also a right coset of some proper subgroup. Therefore we could
also write right coset instead of left coset.
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HS-stability and complex products in involution semigroups 397

If (S, ◦) is a semigroup and A1, . . . , An are subsets of S, we define the complex
product of the subsets as

A1 . . . An := {a1 . . . an | ai ∈ Ai : 1 ≤ i ≤ n},

where as is usual, we have denoted the binary operation ◦ simply by juxtaposition.
If, in particular, there is some A ⊆ S with Ai = A for all 1 ≤ i ≤ n, we write
An := A1 . . . An . In this context, wewill often denote a singleton by its single element.
For example, given a subgroup H of a group G and an element g ∈ G, the complex
products {g}H and H{g} will be written simply as gH and Hg, respectively; this
coincides, both in notation and meaning, with the left and right cosets of H in G with
respect to g.

If (S, ◦) is a semigroup and ∗ is an involution, i.e., a unary operation ∗ : S → S for
which the identities

(x∗)∗ = x and (xy)∗ = y∗x∗

hold for all x, y ∈ S, we call (S, ◦, ∗) an involution semigroup. If (G, ◦, −1, 1) is
a group, then (G, ◦, −1) is clearly an involution semigroup. Less trivially, the set of
n × n matrices over the complex numbers forms an involution semigroup with the
natural multiplication and conjugate transposition as involution.

Let (S, ◦, ∗) be an involution semigroup. A subset T of S is called an involution
subsemigroup if T is closed under ◦ and ∗, so that

x, y ∈ T �⇒ xy ∈ T and x ∈ T �⇒ x∗ ∈ T .

Given T ⊆ S, we denote by 〈T 〉 the involution subsemigroup generated by T , i.e., the
smallest involution subsemigroup of S containing T . It is well known that, if S is a
group, 〈T 〉 is the subgroup of S generated by T .

If (S, ◦, ∗) is an involution semigroup and A ⊆ S, we will write

A∗ := {a∗ | a ∈ A}.

3 HS-stability and the original problem

From now on, unless indicated otherwise, S will always denote a semigroup which is
endowed with an involution ∗.

Definition 3.1 We call an element of the form xx∗ for some x ∈ S a hermitian square,
and we let HS := {xx∗ | x ∈ S} be the set of all hermitian squares of S. An involution
subsemigroup T of S is called HS-stable if

(HS:1) HS ⊆ T ,
(HS:2) ∀h ∈ HS ∀x, y ∈ S : xhy ∈ T �⇒ xy ∈ T .

For any subset B ⊆ S, we denote by 〈B〉HS the smallest HS-stable involution sub-
semigroup of S containing B and say that 〈B〉HS is generated by B.
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398 B. Bodor et al.

Note that 〈B〉HS is well defined. Indeed, the whole involution semigroup S is always
HS-stable and the intersection of HS-stable involution subsemigroups is again HS-
stable, so 〈B〉HS is just the intersection of all HS-stable involution subsemigroups
containing B.

Lemma 3.2 For any nonempty subsets S1, . . . , Sn of an involution semigroup S and
any 1 ≤ k ≤ n we have

S1 . . . Sk S
∗
k . . . S∗

1 ⊆ 〈S1 . . . Sn〉HS.

Proof Pick x = s1 . . . skt∗k . . . t∗1 in the set on the left (with si , ti ∈ Si , 1 ≤ i ≤ k) and
fix some g j ∈ S j for all k < j ≤ n. Put y := gk+1 . . . gn . Then

s1 . . . sk yy
∗(t1 . . . tk)

∗ = (s1 . . . sk y)(t1 . . . tk y)
∗

= (s1 . . . skgk+1 . . . gn)(t1 . . . tkgk+1 . . . gn)
∗

which is in

(S1 . . . Sn)(S1 . . . Sn)
∗ ⊆ 〈S1 . . . Sn〉 ≤ 〈S1 . . . Sn〉HS.

Since yy∗ is a hermitian square and 〈S1 . . . Sn〉HS is HS-stable,

x = (s1 . . . sk)(t1 . . . tk)
∗ ∈ 〈S1 . . . Sn〉HS

follows. ��
We want to know when 〈S1S2 . . . Sn〉HS = 〈S1 ∪ S2 ∪ · · · ∪ Sn〉HS. Taking S′ :=

〈S1 ∪ S2 ∪ · · · ∪ Sn〉HS in the following proposition provides the answer.

Proposition 3.3 Let S be an involution semigroup. For any nonempty subsets
S1, . . . , Sn of S and for any involution subsemigroup S′ of S, the following are equiv-
alent:

(1) 〈S1 . . . Sn〉HS � S′.
(2) There exists an HS-stable T � S′ and a1, . . . , an−1 ∈ S with ai−1Sia∗

i ⊆ T
for all 1 < i < n as well as S1a∗

1 ⊆ T and an−1Sn ⊆ T .

Proof (2) ⇒ (1): Let T and a1, . . . , an−1 be as in (2). Then

S1a
∗
1a1S2a

∗
2 . . . an−2Sn−1a

∗
n−1an−1Sn ⊆ T n ⊆ T .

Since all a∗
i ai are hermitian squares and T is HS-stable, we can conclude from (HS:2)

that any element of S1 . . . Sn must also be in T , so 〈S1 . . . Sn〉HS ⊆ T .
(1) ⇒ (2): Put T = 〈S1 . . . Sn〉HS � S′. Fix xi ∈ Si for all 1 ≤ i ≤ n, and set

ai := x1 . . . xi and hi := a∗
i ai ∈ HS , for all 1 ≤ i ≤ n. By Lemma 3.2, we have

hi−1yhi = a∗
i−1(x1 . . . xi−1y)(x

∗
i . . . x∗

1 )ai ∈ a∗
i−1Tai
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HS-stability and complex products in involution semigroups 399

for all y ∈ Si with 1 < i < n. Consequently,

ai−1hi−1yhia
∗
i ∈ ai−1a

∗
i−1Taia

∗
i = h∗

i−1Th
∗
i ⊆ HST HS ⊆ T ,

which implies ai−1ya∗
i ∈ T because hi−1 and hi are hermitian squares and T is

HS-stable. If y ∈ S1, then applying Lemma 3.2 with k = 1 gives

ya∗
1 ⊆ T

and if y ∈ Sn we find

an−1y = x1 . . . xn−1y ∈ S1 . . . Sn ⊆ T . ��

As explained in Sect. 2, any group G is an involution semigroup with the inverse
operation −1 as the involution, and the involution subsemigroups of G are just the
subgroups. The only hermitian square is then the neutral element and every subgroup
is HS-stable. Moreover, the conditions ai−1Sia

−1
i ⊆ T , S1a

−1
1 ⊆ T , an−1Sn ⊆ T are

equivalent to Si ⊆ a−1
i−1Tai , S1 ⊆ Ta1, Sn ⊆ a−1

n−1T , respectively. Proposition 3.3
then reduces to the following.

Corollary 3.4 Let G be a group. For any nonempty subsets S1, . . . , Sn of G and for
any subgroup G ′ ≤ G, the following are equivalent:

(1) 〈S1 . . . Sn〉 � G ′.
(2) There exists a subgroup T � G ′ and a1, . . . , an−1 ∈ G with Si ⊆ a−1

i−1Tai
for all 1 < i < n as well as S1 ⊆ Ta1 and Sn ⊆ a−1

n−1T .

In the case when n = 2, S1 = S−1
2 , and G ′ = 〈S1 ∪ S2〉 = 〈S1〉 = 〈S2〉, this further

reduces to Corollary 1.3, answering Problem 1.1.

4 Groupmorphic images and HS-stability

The characterisation from Sect. 3 is useful if the involution semigroup under consid-
eration is “group-like” in the sense that there are few hermitian squares and therefore
many HS-stable involution subsemigroups. However, it might happen that an involu-
tion semigroup has very few or indeed no proper HS-stable involution subsemigroups
at all, in which case Proposition 3.3 becomes trivial. We will say that an involution
semigroup is HS-simple if it has no proper HS-stable involution subsemigroups.

In this section we give a necessary condition for the HS-simplicity of an involution
semigroup. The terminology surrounding group morphic images will be vital to our
main result (Theorem 5.6) that classifies HS-stable involution subsemigroups.

We will sometimes be interested in an involution semigroup considered only as a
semigroup, i.e., we sometimes want to forget about the involution. Consequently, we
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400 B. Bodor et al.

need to be explicit in our terminology regarding homomorphisms between semigroups
and between involution semigroups.

Definition 4.1 Given involution semigroups S and T , a map φ : S → T is called a
(◦)-homomorphism if we have φ(ab) = φ(a)φ(b) for all a, b ∈ S. If, additionally,
φ(a∗) = φ(a)∗ for all a ∈ S, we call φ a (◦, ∗)-homomorphism. We call T a (◦)-
morphic image (respectively (◦, ∗)-morphic image) of S if there is a surjective (◦)-
homomorphism (respectively (◦, ∗)-homomorphism) from S to T .

Lemma 4.2 Letφ : S → S′ be a (◦, ∗)-homomorphism between involution semigroups
S and S′, and let T ′ be an HS-stable involution subsemigroup of S′. Then φ−1(T ′) =
{x ∈ S | φ(x) ∈ T ′} is an HS-stable involution subsemigroup of S.

Proof Let T = φ−1(T ′) and x, y ∈ S, zz∗ ∈ HS . By the general properties of
homomorphic preimages, T is an involution subsemigroup of S. Moreover,

φ(zz∗) = φ(z)φ(z∗) = φ(z)φ(z)∗ ∈ HS′ ⊆ T ′,

and so zz∗ ∈ T . Hence (HS:1) holds. Now suppose xzz∗y ∈ T , so that

φ(xzz∗y) = φ(x)φ(zz∗)φ(y) ∈ T ′.

Since T ′ is HS-stable and φ(zz∗) ∈ HS′ we have φ(x)φ(y) = φ(xy) ∈ T ′, so that
xy ∈ T . Hence (HS:2) holds. ��
Corollary 4.3 An involution semigroup S is HS-simple if and only if every (◦, ∗)-
homomorphic image of S is HS-simple.

Proof ⇒ Let S′ be a (◦, ∗)-homomorphic image of S, say φ : S � S′. If T ′ is an
HS-stable involution subsemigroup of S′ then φ−1(T ′) = S by Lemma 4.2 as S is
HS-simple. Hence T ′ ⊇ φ(φ−1(T ′)) = φ(S) = S′, and thus T ′ = S′
⇐ Immediate, as S is the (◦, ∗)-homomorphic image of the identity map. ��
Of particular importance are group (◦)- and (◦, ∗)-morphic images, that is, (◦)- and

(◦, ∗)-morphic images, respectively, that are groups. Group (◦)-morphic images are
well understood (see [3]).

Remark 4.4 Notice that if φ : S → G is a (◦)-homomorphism between an involution
semigroup and a group (G, ◦, −1, 1), then it preserves the involution if and only if
HS ⊆ φ−1(1) = {s ∈ S | φ(s) = 1}. This follows from the fact that

φ(a∗) = φ(a)−1 ⇐⇒ φ(aa∗) = φ(a)φ(a∗) = 1.

The following pair of corollaries are immediate from Lemma 4.2 and Corollary 4.3,
since the trivial subgroup of a group is HS-stable and hence no nontrivial group is HS-
simple.
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HS-stability and complex products in involution semigroups 401

Corollary 4.5 Let S be an involution semigroup and let G be a group. If G is a
(◦, ∗)-morphic image of S, say φ : S � G, then φ−1(1) is an HS-stable involution
subsemigroup of S.

Corollary 4.6 If S is an HS-simple involution semigroup, then it has only trivial group
(◦, ∗)-morphic images.

Remark 4.7 The converse implication of Corollary 4.6 does not hold in general. For
example, if S is an involution semigroup with a zero element 0 and with S �= S2,
then S is not HS-simple since S2 is an HS-stable proper subsemigroup by Lemma 5.5.
However, the only possible group (◦, ∗)-morphic image of S is the trivial one. Indeed,
assume φ is a (◦, ∗)-morphism from S onto a group G. It must map 0 to 1 and for any
g ∈ G there must be some sg ∈ S with φ(sg) = g. Consequently,

g = g1 = φ(sg)φ(0) = φ(sg0) = 1

for all g ∈ G; hence G is trivial.

Next we give a necessary and sufficient condition for an involution subsemigroup
to equal φ−1(1) for some surjective (◦, ∗)-morphism φ onto a group.

For a subset T of S, we define Tω := {s ∈ S | ∃t ∈ T : st ∈ T } and call it the
closure of T (in S).

Remark 4.8 By the following lemma,ω is monotone in general and extensive over sub-
semigroups. However, it is not necessarily idempotent over involution subsemigroups.
In fact, we will show in Example 6.6 that there exists an involution subsemigroup T
with Tω � (Tω)ω. However, we will show in Corollary 5.4 that ω becomes a clo-
sure operator when restricted to involution subsemigroups T satisfying a particular
conjugation condition.

Lemma 4.9 Let S be an involution semigroup with subsets T and T ′. Then

T ⊆ T ′ �⇒ Tω ⊆ T ′ω.

Moreover, if T forms a subsemigroup of S then T ⊆ Tω and Tω ⊆ (Tω)ω.

Proof Assume T ⊆ T ′, and let s ∈ Tω, so st, t ∈ T for some t ∈ T . Hence st, t ∈ T ′,
so s ∈ T ′ω, and we conclude that Tω ⊆ T ′ω.

Suppose now that T is a subsemigroup of S, and let t ∈ T . Then t t, t ∈ T so that
t ∈ Tω; hence T ⊆ Tω. The inclusion Tω ⊆ (Tω)ω follows then immediately from
the first result. ��
Remark 4.10 Note that, if we drop the condition that T forms a subsemigroup of S
in the second statement above, then T need not be contained in Tω. For example,
consider again the symmetric group Sn of degree n ≥ 2, and let T be a nonempty
subset that contains only odd permutations. Then Tω contains only even permutations.

We let ES denote the set of idempotents of S. We call a subset T of S
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– full if ES ⊆ T ,
– closed if T = Tω,
– reflexive if ab ∈ T implies ba ∈ T ,
– dense if for all s ∈ S there exist x, y ∈ S with sx, ys ∈ T .

Let T be a subsemigroup of S. It follows from [3, Theorem 2.4] that T = φ−1(1)
for some surjective (◦)-homomorphism φ : S � G with G a group if and only if T is
full, closed, reflexive, and dense. For involution semigroups this result becomes the
following:

Lemma 4.11 Let S be an involution semigroup with an involution subsemigroup T .
Then T = φ−1(1) for some surjective (◦, ∗)-homomorphism φ : S � G with G a
group if and only if T is closed and reflexive and HS ⊆ T .

Proof ⇒ Let T = φ−1(1) for some surjective (◦, ∗)-homomorphism φ from S to a
group G. Then φ is a (◦)-homomorphism, and thus T is closed and reflexive. Since φ

also preserves ∗ we have HS ⊆ T by Remark 4.4.
⇐ It suffices to show that T is dense and full. If s ∈ S then ss∗, s∗s ∈ HS ⊆ T ,

so T is dense. If e ∈ ES then e(ee∗) = ee∗, from which it follows that ES ⊆ HSω.
Since T is closed we thus have

ES ⊆ HSω ⊆ Tω = T

and so T is full. Hence there exists a (◦)-homomorphismφ : S � G with T = φ−1(1).
By Remark 4.4 the map φ preserves ∗ since HS ⊆ φ−1(1). ��

5 Finding the HS-stable involution subsemigroup generated by a set

If S is an involution semigroup and T is an HS-stable involution subsemigroup then
the condition xT x∗ ⊆ T need not hold for all x ∈ S. For example, if S is a group then
all subgroups are HS-stable, but non-normal subgroups do not satisfy xT x−1 ⊆ T for
all x ∈ S. We show in this section that a weakening of this condition together with a
weakened closure condition is equivalent to HS-stability. We first require a couple of
lemmas.

Lemma 5.1 Let S be an involution semigroup and T an HS-stable involution subsemi-
group of S. Then

(i) ES ⊆ T .
(ii) xH2

S x
∗ ⊆ T for each x ∈ S.

Proof (i) If e ∈ ES then e∗ = (ee)∗ = e∗e∗; hence e∗ ∈ ES . By (HS:1) we have
ee∗, e∗e ∈ T , and so

(ee∗)(e∗e) = ee∗e = (ee)e∗e = e(ee∗)e ∈ T ,

so by (HS:2) we have e = ee ∈ T .
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HS-stability and complex products in involution semigroups 403

(ii) Let x ∈ S and a = gg∗hh∗ ∈ H2
S be arbitrary. Then xaa∗x∗ = (xa)(xa)∗ ∈

HS ⊆ T by (HS:1). On the other hand we have

xaa∗x∗ = xa(gg∗hh∗)∗x∗ = xa(hh∗)(gg∗)x∗,

and so by applying (HS:2) to the bracketed hermitian squares we obtain xax∗ ∈ T as
required. ��
Corollary 5.2 If S = 〈ES〉, then S is HS-simple.

Proof Assume S = 〈ES〉, and let T be an HS-stable involution subsemigroup of S.
Then by Lemma 5.1(i) we have ES ⊆ T , and so S = 〈ES〉 ⊆ T . ��
Lemma 5.3 Let S be an involution semigroup and let T ⊆ S be such that

(1) xH2
S x

∗ ⊆ T for each x ∈ S;
(2) Tω ∩ S2 = T ∩ S2;
(3) T \S2 = T ∗\S2.

Then T forms an involution subsemigroup of S containing HS.

Proof Assume T satisfies (1), (2), and (3); we first show that HS ⊆ T . Let gg∗ ∈ HS .
Then gg∗(gg∗gg∗gg∗) and gg∗gg∗gg∗ are both elements of gH2

S g
∗, and thus of T

by (1). Hence gg∗ ∈ Tω, and so gg∗ ∈ T by (2).
Now let x ∈ T . If x /∈ S2 then we immediately get x∗ ∈ T by (3). Suppose instead

that x = yz ∈ S2. Then x∗ = z∗y∗ ∈ S2, and

x∗xx∗x = (x∗x)(x∗x)∗ ∈ HS ⊆ T

by (1). Since x, x∗xx∗x ∈ T , we have x∗xx∗ ∈ Tω. Clearly x∗xx∗ ∈ S2, so x∗xx∗ ∈
Tω ∩ S2 = T ∩ S2 by (2). Since xx∗ ∈ T we have x∗ ∈ Tω, and as x∗ ∈ S2 we get
x∗ ∈ T by (2).

Now suppose x, y ∈ T . Then, as (xyy∗)x∗ = (xy)(xy)∗ ∈ HS ⊆ T and x∗ ∈ T ,
we have that xyy∗ ∈ Tω ∩ S2, and so xyy∗ ∈ T by (2). Similarly, xy ∈ Tω ∩ S2 as
y∗ ∈ T and so xy ∈ T by (2). Hence T is an involution subsemigroup. ��
Corollary 5.4 Let S be an involution semigroup with involution subsemigroup T . If
xH2

S x
∗ ⊆ T for each x ∈ S, then Tω is a closed involution subsemigroup containing

HS.

Proof We first show that Tω = (Tω)ω. Since T is a subsemigroup of S it follows
from Lemma 4.9 that Tω ⊆ (Tω)ω. For the converse inclusion, let s ∈ (Tω)ω, so
there exists a t ∈ Tω such that st ∈ Tω. This in turn implies that there exist v,w ∈ T
such that stv, tw ∈ T . Then

(stv)(v)∗(w)(tw)∗ = s(tvv∗ww∗t∗) ∈ T

and tvv∗ww∗t∗ ∈ t H2
S t

∗ ⊆ T . Hence s ∈ Tω and Tω is therefore closed.
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We now show that Tω satisfies the conditions of Lemma 5.3. Condition (1) follows
from our hypothesis, since T ⊆ Tω by Lemma 4.9. Condition (2) follows immediately
from the closedness of Tω.

The last condition, (3), follows immediately if we show that Tω = (Tω)∗. Let
s ∈ Tω. Then there exists a t ∈ T such that st ∈ T . By our hypothesis, s∗t t∗t t∗s ∈ T .
Since t, t∗, st ∈ T , we also have s∗t t∗t t∗st, t t∗t t∗st ∈ T . This implies s∗ ∈ Tω;
hence (Tω)∗ ⊆ Tω. Moreover, Tω = (Tω)∗∗ ⊆ (Tω)∗. ��

Lemma 5.5 Let S be an involution semigroup and T an involution subsemigroup of S.
Then T is HS-stable if and only if T ∩ S2 is HS-stable. In particular, S2 is HS-stable.

Proof Notice that HS ⊆ S2, that xgg∗y ∈ T if and only if xgg∗y ∈ T ∩ S2, and that
xy ∈ T if and only if xy ∈ T ∩ S2, from which the first result follows. The second
statement follows by noting that S2 is an involution subsemigroup and taking T = S.

��

Theorem 5.6 Let S be an involution semigroup and T ⊆ S. Then T is an HS-stable
involution subsemigroup if and only if

(1) xH2
S x

∗ ⊆ T for each x ∈ S;
(2) Tω ∩ S2 = T ∩ S2;
(3) T \S2 = T ∗\S2.

Proof ⇒ Let T be an HS-stable involution subsemigroup, so condition (1) holds by
Lemma 5.1 (ii), and (3) is immediate because T = T ∗.

It remains to show (2). The inclusion T ∩ S2 ⊆ Tω ∩ S2 is immediate because
T ⊆ Tω holds by Lemma 4.9. For the converse inclusion, let s ∈ Tω∩S2, say s = xy
and st, t ∈ T . Then, as T is an involution subsemigroup, we have t∗ ∈ T and so

x
(
ytt∗y∗x∗x

)
y = (xyt)t∗

(
y∗x∗xy

) = (xyt)t∗
(
y∗x∗)(y∗x∗)∗ ∈ T 2HS ⊆ T

by (HS:1). However, ytt∗y∗x∗x = (yt)(yt)∗(x∗x) ∈ H2
S ⊆ T , and so s = xy ∈ T

by two applications of (HS:2). Hence Tω ∩ S2 ⊆ T ∩ S2.
⇐ Let T satisfy (1), (2), and (3). Then T forms an involution subsemigroup of S

containing HS by Lemma 5.3, so (HS:1) holds.
Now let xgg∗y ∈ T , so (xgg∗y)∗ ∈ T as T is closed under ∗. Then

xy(xgg∗y)∗ = xyy∗gg∗x∗ ∈ xH2
S x

∗ ⊆ T

and xy ∈ Tω ∩ S2, so that xy ∈ T by (2). Hence (HS:2) holds, and T is HS-stable. ��

Theorem 5.7 Let S be an involution semigroup and let A ⊆ S. Then

〈A〉HS = (〈A ∪
⋃

x∈S
xH2

S x
∗〉ω ∩ S2) ∪ ((A ∪ A∗)\S2).
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Proof Let A′ := 〈A ∪ ⋃
x∈S xH2

S x
∗〉. We first show that

K := (
A′ω ∩ S2

) ∪ (
(A ∪ A∗)\S2)

forms an HS-stable involution subsemigroup that contains A. Observe first that A ⊆
A′ ⊆ A′ω holds byLemma4.9 since A′ is an involution subsemigroup of S. Therefore,

A = (
A ∩ S2

) ∪ (
A\S2) ⊆ (

A′ω ∩ S2
) ∪ (

(A ∪ A∗)\S2) = K .

We check the conditions (1)–(3) from Theorem 5.6. For each x ∈ S, we have
xH2

S x
∗ ⊆ A′ ∩ S2 ⊆ A′ω ∩ S2 ⊆ K , so condition (1) holds. Condition (3) follows

from the facts that K\S2 = (A ∪ A∗)\S2 and x ∈ S2 if and only if x∗ ∈ S2. In order
to prove (2), notice that K ⊆ A′ω. Indeed, A ⊆ A′ ⊆ A′ω and, as A′ω satisfies (1),
it follows by Corollary 5.4 that A′ω is a closed involution subsemigroup of S, and in
particular contains A∗. Consequently,

Kω ∩ S2 ⊆ (A′ω)ω ∩ S2 = A′ω ∩ S2 = K ∩ S2.

In order to prove the converse inclusion, let x ∈ K ∩ S2 = A′ω ∩ S2. Since A′ω
is an involution subsemigroup of S, we have x2 ∈ A′ω and clearly x2 ∈ S2, so
x2 ∈ A′ω ∩ S2 = K ∩ S2. It follows that x ∈ (K ∩ S2)ω ⊆ Kω by the monotonicity
of ω, and hence x ∈ Kω ∩ S2. Therefore also (2) holds, and we conclude that K is an
HS-stable subsemigroup containing A; hence 〈A〉HS ⊆ K .

It remains to show that K ⊆ 〈A〉HS. Since 〈A〉HS is an HS-stable involution sub-
semigroup containing A we have A ∪ ⋃

x∈S xH2
S x

∗ ⊆ 〈A〉HS by condition (1) of
Theorem 5.6, and hence A′ is an involution subsemigroup of 〈A〉HS. Applying the
closure operation, and then intersecting with S2 we obtain

A′ω ∩ S2 ⊆ 〈A〉HSω ∩ S2 = 〈A〉HS ∩ S2,

where the first inclusion holds by the monotonicity ofω and the final equality holds by
condition (2) of Theorem 5.6. Since 〈A〉HS is closed under ∗ we have A∪ A∗ ⊆ 〈A〉HS.
Hence K ⊆ (〈A〉HS ∩ S2) ∪ (〈A〉HS\S2) = 〈A〉HS. ��

If S = S2 then Theorems 5.6 and 5.7 simplify significantly:

Corollary 5.8 Let S be an involution semigroup with S = S2 and let T ⊆ S. Then T
is an HS-stable involution subsemigroup if and only if T is closed and xH2

S x
∗ ⊆ T

for each x ∈ S. In particular, if A ⊆ S then

〈A〉HS = 〈A ∪
⋃

x∈S
xH2

S x
∗〉ω.

Remark 5.9 We cannot replace
⋃

x∈S xH2
S x

∗ in the result above with the set of con-
jugates of hermitian squares

⋃
x∈S xHSx∗ of S (or indeed with HS), as we will show
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in Example 6.6. In fact, we show that there exists an involution semigroup S such that
S = S2 for which 〈HS〉ω is equal to 〈⋃x∈S xHSx∗〉ω but is not HS-stable, so

〈HS〉HS = 〈
⋃

x∈S
xH2

S x
∗〉ω � 〈

⋃

x∈S
xHSx

∗〉ω = 〈HS〉ω.

We end this section with a quick application of the above results in the case of
involution semigroups (S, ◦, ∗) with a zero element, denoted by 0. Notice that 0∗s =
(s∗0)∗ = 0∗ = (0s∗)∗ = s0∗ for every s ∈ S. Since a semigroup contains at most one
absorbing element, 0 = 0∗ follows.

Corollary 5.10 Let S be an involution semigroup containing a zero element 0 and
A ⊆ S. Then

〈A〉HS = S2 ∪ (
(A ∪ A∗)\S2).

Consequently, S is HS-simple if and only if S = S2.

Proof We first note that for any B ⊆ S, if 0 ∈ B then Bω = S. Indeed, s0 = 0 ∈ B,
and so s ∈ Bω for any s ∈ S. Hence as 0H2

S0
∗ = {0}, it follows by Theorem 5.7 that

〈A〉HS = (
S ∩ S2

) ∪ (
(A ∪ A∗)\S2)

and the result follows.
It is then immediate that, if S = S2, then S is HS-simple. The converse follows

from the fact that S2 is HS-stable by Lemma 5.5. ��
Corollary 5.11 A monoid with involution containing a zero element is HS-simple.

Proof Since S is a monoid, we have x = x1 ∈ S2 for any x ∈ S. Consequently,
S = S2 and Corollary 5.10 yields the desired result. ��

6 HS-stability for regular ∗-semigroups

In this section we apply Theorem 5.6 to an important class of semigroups with invo-
lution: regular ∗-semigroups.

Given x ∈ S, we call x ′ ∈ S an inverse of x if xx ′x = x and x ′xx ′ = x ′; the set of
all inverses of x will be denoted by V (x). A semigroup S is regular if every element
has an inverse, and is orthodox if further ES forms a subsemigroup of S. A semigroup
is inverse if every element x has a unique inverse, which we denote by x−1. The set
of idempotents of an inverse semigroup S forms a semilattice, that is, a commutative
idempotent semigroup, and hence every inverse semigroup is orthodox.

An involution semigroup S is called a regular ∗-semigroup if x∗ ∈ V (x) for each
x ∈ S (noting that (S, ◦) forms a regular semigroup). Semigroups with involution of
this type were first studied by Nordahl and Scheiblich in [9]. Note that S = S2 for
a regular ∗-semigroup since x = x(x∗x). Every inverse semigroup forms a regular
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∗-semigroup (with involution −1), but the converse need not hold as the following
example shows.

Example 6.1 Let I be a set and define a product on S = I × I by (i, j)(k, �) = (i, �).
Then the unarymap ∗ : S → S given by (i, j)∗ = ( j, i) is an involution, and V (x) = S
for each x ∈ S, so that S is a regular ∗-semigroup.

A regular ∗-semigroup S is called an orthodox ∗-semigroup if (S, ◦) is orthodox.
The example above is clearly an orthodox ∗-semigroup since S = ES .

Lemma 6.2 Let S be a regular ∗-semigroup. Then

(i) HS = {e ∈ ES | e∗ = e} ⊆ ES, with HS = ES if and only if S is inverse.
(ii) H2

S = ES.
Moreover, if S is orthodox then

(iii) xex∗ ∈ ES for each x ∈ S and e ∈ ES.

Proof (i) For every x ∈ S we have (xx∗)(xx∗) = (xx∗x)x∗ = xx∗. Hence xx∗ ∈ ES ,
and (xx∗)∗ = (x∗)∗x∗ = xx∗, so HS ⊆ {e ∈ ES | e∗ = e}. For the other containment,
let us assume that e∗ = e = e2. Then e = ee∗ ∈ HS . Therefore we have {e ∈ ES |
e∗ = e} ⊆ HS . The final claim is then immediate from [1, Lemma 1].

(ii) The fact that H2
S ⊆ ES follows from (i) and [9, Theorem 2.5]. If e ∈ ES , then,

recalling that E∗
S = ES , we have

e = ee∗e = e(e∗e∗)e = (ee∗)(e∗e) ∈ H2
S .

(iii) Follows from [5, Proposition 6.2.2]. ��
Definition 6.3 Given an involution subsemigroup S, we let FS := {xex∗ | x ∈ S, e ∈
ES}.
Corollary 6.4 Let S be a regular ∗-semigroup and T ⊆ S. Then T is an HS-stable
involution subsemigroup of S if and only if T is closed and FS ⊆ T . Consequently,

〈T 〉HS = 〈T ∪ FS〉ω.

Proof Since H2
S = ES by Lemma 6.2(ii), it follows that FS = ⋃

x∈S xH2
S x

∗. Hence,
as S = S2, the result is immediate from Corollary 5.8. ��
Corollary 6.5 Let S be an orthodox ∗-semigroup and T ⊆ S. Then T is an HS-stable
involution subsemigroup of S if and only if T is closed and full. Consequently,

〈T 〉HS = 〈T ∪ ES〉ω,

and ESω is the minimal HS-stable involution subsemigroup of S.
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Proof Since S is orthodox we have FS ⊆ ES by Lemma 6.2(iii). The claimed equiv-
alence now follows from Corollary 6.4 and Lemma 5.1(i). For the second claim, it
suffices to show that ES = 〈ES〉. This follows from the fact that S is orthodox and
that E∗

S = ES for any involution semigroup. ��
We note that the corollary above does not hold for general regular ∗-semigroups.

Indeed, we shall construct a regular ∗-semigroup S in which 〈ES〉ω is not an HS-stable
involution subsemigroup.

Example 6.6 Let G be a finite group with identity element e and non-normal subgroup
K , that is, there exist x ∈ G and a ∈ K with xax−1 /∈ K . Let P be an N × N

matrix with entries pi, j (i, j ∈ N) from K and such that pi, j = p−1
j,i . Suppose also

pi,1 = p1,i = pi,i = e for each i ∈ N, and p2,3 = a. On S = N × G × N, define a
product by

(i, g, j)(k, h, �) = (i, gp j,kh, �)

and involution ∗ by (i, g, j)∗ = ( j, g−1, i). Then S forms a regular ∗-semigroup, called
a Rees matrix involution semigroup (we refer the reader to [2] for further information).
We consider 〈ES〉ω, noting that 〈ES〉 ⊆ {(i, h, j) | i, j ∈ N, h ∈ K } by Howie [4].
Let (i, g, j) ∈ 〈ES〉ω, so that there exists (k, h, �) ∈ 〈ES〉 such that

(i, g, j)(k, h, �) = (i, gp j,kh, �) ∈ 〈ES〉.

Hence gp j,kh ∈ K , so that g ∈ Kh−1 p−1
j,k ⊆ K since h, p j,k ∈ K . Thus 〈ES〉ω ⊆

{(i, h, j) | i, j ∈ N, h ∈ K }. However (2, p−1
3,2, 3) = (2, a, 3) ∈ ES and

(1, x, 1)(2, a, 3)(1, x−1, 1) = (1, xax−1, 1) ∈ FS .

ByLemma4.9wehave FS ⊆ 〈FS〉 ⊆ 〈FS〉ω, and so (1, xax−1, 1) ∈ 〈FS〉ω. However,
xax−1 /∈ K so that 〈FS〉ω is not contained in 〈ES〉ω. Since 〈FS〉ω is the minimum
HS-stable involution subsemigroup of S by Corollary 6.4, it follows that 〈ES〉ω is not
an HS-stable involution subsemigroup of S (and thus nor is 〈HS〉ω).

This example also allows us to construct an involution subsemigroup T such that
Tω �= (Tω)ω, thus showing that ω in general is not a closure operator on involution
subsemigroups of an involution semigroup (see Remark 4.8). Given S as above, con-
sider the involution subsemigroup T = {(1, e, 1), (1, e, 2), (2, e, 1), (2, e, 2)} (note
that T is isomorphic to the involution semigroup given in Example 6.1 with |I | = 2).
Then as p3,2 = a−1 we have

(2, a, 3)(2, e, 1) = (2, e, 1) and (1, e, 3)(1, e, 1) = (1, e, 1),

so that (2, a, 3), (1, e, 3) ∈ Tω. Also, (1, a−1, 1)(i, e, j) = (1, a−1, j) /∈ T for any
i, j ∈ N, and so (1, a−1, 1) /∈ Tω. However, (1, a−1, 1)(2, a, 3) = (1, e, 3) and so
(1, a−1, 1) ∈ (Tω)ω. Hence Tω �= (Tω)ω.
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If S is an orthodox ∗-semigroup then ESω = φ−1(1) where φ : S � G is the
greatest group (◦)-morphic image of S by Gigoń [3, Theorem 4.5]. That is, for every
(◦)-morphic image of S, say ψ : S � H , there exists a (◦)-morphism σ : G → H
such that ψ = σφ. We refer the reader to [3, Chapter 4] for a further study.

Corollary 6.7 Let S be an orthodox ∗-semigroup. Then the following are equivalent:

(1) S is HS-simple.
(2) Every group (◦)-morphic image of S is trivial.
(3) S = ESω.

Moreover, if S is inverse then these are also equivalent to:

(4) For every x ∈ S there exists e ∈ ES with e = xe = ex.

Proof Since ESω = φ−1(1) is the minimal HS-stable involution subsemigroup, the
equivalence of (1), (2) and (3) is immediate.

Now let S be inverse, so that e−1 = e for every e ∈ ES .
(4) ⇒ (1). Let x ∈ S, so that there exists e ∈ ES with xe = e. Hence x ∈ ESω

and S = ESω.
(1) ⇒ (4). Assume S = ESω. Then for any x ∈ S there exist e, f ∈ ES with

xe = f . Then ex−1 = f −1 = f , and so ex−1xe = f f = f , and hence ex−1x = f
as x−1x ∈ ES and as ES is commutative. Consequently,

x f = x(ex−1x) = x(x−1xe) = xe = f and f x = (ex−1)x = f . ��

Remark 6.8 If S is an orthodox ∗-semigroup with ES forming an HS-stable involution
subsemigroup, then ES = ESω. This later condition is a well-studied property known
as E-unitarity. The structure of E-unitary regular ∗-semigroups is given in [6]. For
example, the free inverse monoid on a set X is E-unitary, and so ES = {1} is an
HS-stable involution subsemigroup.

7 HS-stability for commutative involution semigroups

In this section we consider commutative involution semigroups. Every commutative
semigroup comes equipped with an involution, namely the identity map x∗ = x ; such
involution semigroups are called semigroups with trivial involution.Conversely, every
semigroup with trivial involution is clearly commutative.

For commutative semigroups with trivial involution we have ES ⊆ HS = {s2 | s ∈
S}. This fails to hold for general commutative semigroups with involution; take for
example the 3-element non-chain semilattice Y = {x, y, 0} with xy = x0 = y0 = 0.
Then the map x∗ = y, y∗ = x and 0∗ = 0 can be shown to be an involution, and
so EY = Y �= HY = {0}. Note that Y does not form a regular ∗-semigroup when
equipped with this involution.
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Note also that a commutative involution semigroup S may have S �= S2. For
example, in (N,+) with trivial involution we have 1 /∈ N2 = {2, 3, . . .}.2

Since S is commutative, every subset is reflexive, and hence it follows from
Lemma 4.11 that an involution subsemigroup T of S is equal to φ−1(1) for some
surjective (◦, ∗)-homomorphism φ : S � G onto a group G if and only if T is closed
and HS ⊆ T .

Theorem 7.1 Let S be a commutative involution semigroup and let T ⊆ S. Then the
following are equivalent:

(1) T is an HS-stable involution subsemigroup of S.
(2) HS ⊆ T , Tω ∩ S2 = T ∩ S2 and T \S2 = T ∗\S2.

Moreover, these conditions imply:
(3) There exists a surjective (◦, ∗)-homomorphism φ : S � G with G a group

such that Tω = φ−1(1).

Proof (1) ⇒ (2). By (HS:1) we have HS ⊆ T and the two other conditions follow
from Theorem 5.6.

(2) ⇒ (1). Note that xH2
S x

∗ = xx∗H2
S for any x ∈ S, and so

⋃
x∈S xH2

S x
∗ = H3

S .
Moreover, xx∗yy∗zz∗ = (xyz)(z∗y∗x∗) by commutativity, and hence H3

S ⊆ HS .
Therefore xH2

S x
∗ ⊆ T for each x ∈ S, so T is HS-stable by Theorem 5.6.

(2) ⇒ (3). Since H3
S ⊆ HS ⊆ T , it follows from Corollary 5.4 that Tω

forms a closed involution subsemigroup containing HS . The result then follows from
Lemma 4.11. ��

We note that the implication (3) ⇒ (2) in Theorem 7.1 needs not hold in general,
as we will show at the end of Example 7.4. Alternatively, commutative orthodox ∗-
semigroups S which are not E-unitary provide further examples, since here ES is not
HS-stable but ESω is closed and HS-stable.

Corollary 7.2 Let S be a commutative involution semigroup and let A ⊆ S. Then
〈A〉HS = (〈A ∪ HS〉ω ∩ S2) ∪ ((A ∪ A∗)\S2).
Proof As HS ⊆ 〈A〉HS by (HS:1), it follows from Theorem 5.7 that

〈A〉HS = 〈A ∪ HS〉HS = ((
(A ∪ HS) ∪ H3

S

)
ω ∩ S2

) ∪ (
((A ∪ HS) ∪ (A ∪ HS)

∗)\S2).

Since H3
S ⊆ HS and HS = H∗

S ⊆ S2, the desired result follows. ��
Corollary 7.3 Let S be a commutative involution semigroup with S = S2 and let
T ⊆ S. Then the following are equivalent:

(1) T is an HS-stable involution subsemigroup of S.
(2) HS ⊆ T and T is closed.
(3) There exists a surjective (◦, ∗)-homomorphism φ : S � G with G a group

such that T = φ−1(1).

2 We follow the convention that N stands for the set of strictly positive integers.
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In particular, 〈T 〉HS = 〈T ∪ HS〉ω.

Proof Follows immediately from Theorem 7.1 and Lemma 4.11. ��

Example 7.4 Consider S = (N,+) with trivial involution, noting that HS = 2N is a
closed involution subsemigroup of S. Hence HS is HS-stable by Theorem 7.1. Now let
T be an HS-stable involution subsemigroup of N containing 2k+1 for some k ≥ 0. If
k = 0 then 2n + 1 ∈ (T ∪ 2N)ω ⊆ T for each n ≥ 0 since (2n + 1) + 1 = 2(n + 1).
Hence T = N. Otherwise k ≥ 1, so that 3 ∈ (T ∪ 2N)ω ⊆ T since 3+ (2k − 2) ∈ T .
As T is an involution subsemigroup containing 2N∪{3}, it follows that T = N+N =
N + 1. We have thus shown that N has three HS-stable involution subsemigroups:
2N � N + 1 � N.

Notice that (N + k)ω = N for any k ∈ N since t + k + 1, k + 1 ∈ N + k for all
t ∈ N. Hence N + 1 provides an example of an HS-stable but not closed involution
subsemigroup. Moreover, N + 2 is not HS-stable but its closure is; this, together with
the (◦, ∗)-homomorphism of S onto the trivial group provides a counterexample to the
implication (3) ⇒ (1) of Theorem 7.1.

8 Complex products in semilattices

The characterisation from Sect. 3 is useful if the involution semigroup has many HS-
stable involution subsemigroups. We showed that, on the other end of the spectrum,
which includes semilattices and monoids with zero (see Corollaries 5.2 and 5.11), no
proper HS-stable involution subsemigroups exist, making the statement of Proposi-
tion 3.3 trivial.

We will now answer, by different means, Problem 1.4 for (meet) semilattices: given
a semilattice S, for which subsets S1, . . . , Sn does the complex product S1 . . . Sn and
the union S1 ∪ · · · ∪ Sn generate the same subsemilattice of S.

Proposition 8.1 Let Y be a semilattice. For any nonempty subsets A1, . . . , An of Y ,
the following are equivalent:

(1) 〈A1 ∪ A2 ∪ . . . ∪ An〉 = 〈A1A2 . . . An〉.
(2) For each 1 ≤ i, j ≤ n and every αi ∈ Ai , there exists β j ∈ A j with αi ≤ β j .

Proof (1) ⇒ (2) Let αi ∈ Ai . Then as αi ∈ 〈A1 ∪ A2 ∪ · · · ∪ An〉 = 〈A1A2 . . . An〉,
there exist a k ∈ N and elements αpq ∈ Aq (1 ≤ p ≤ k, 1 ≤ q ≤ n) with

αi = (α11 . . . α1n) · · · (αk1 . . . αkn).

For each 1 ≤ j ≤ n, it follows by the commutativity of Y that αi = α1 jγ for a suitable
γ . Hence αi ≤ α1 j ∈ A j .
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(2) ⇒ (1) It suffices to show that for each 1 ≤ i ≤ n and each si ∈ Ai we have
si ∈ 〈A1A2 . . . An〉. By our hypothesis, for each j ∈ {1, . . . , n} there exists s j ∈ A j

such that si = si s j . Then

si = sni = (si s1)(si s2) . . . (si si )(si si+1) . . . (si sn) = s1s2 . . . si−1s
n+1
i si+1 . . . sn

= s1s2 . . . si−1si si+1 . . . sn ∈ 〈A1A2 . . . An〉.

��

Remark 8.2 Proposition 8.1 has a particularly pleasing form if Y has the ascending
chain condition, i.e., has no infinite ascending chain α1 < α2 < α3 < · · · of elements.
In this case condition (2) is equivalent to:

(2)′ The sets Ai have the same maximal elements.
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