

Delft University of Technology

DevID: Blockchain-based Portfolios for Software Developers

de Vos, Martijn; Olsthoorn, Mitchell; Pouwelse, Johan

DOI
10.1109/DAPPCON.2019.00030
Publication date
2019
Document Version
Final published version
Published in
Proceedings - 2019 IEEE International Conference on Decentralized Applications and Infrastructures,
DAPPCON 2019

Citation (APA)
de Vos, M., Olsthoorn, M., & Pouwelse, J. (2019). DevID: Blockchain-based Portfolios for Software
Developers. In P. Ruppel, S. Schulte, J. Xu, Y. Park, & A. Kupper (Eds.), Proceedings - 2019 IEEE
International Conference on Decentralized Applications and Infrastructures, DAPPCON 2019: Blockchain
and beyond (pp. 158-163). Article 8783158 https://doi.org/10.1109/DAPPCON.2019.00030
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DAPPCON.2019.00030
https://doi.org/10.1109/DAPPCON.2019.00030

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

DevID: Blockchain-based Portfolios for Software
Developers

Martijn de Vos, Mitchell Olsthoorn, and Johan Pouwelse (j.a.pouwelse@tudelft.nl)
Distributed Systems group, Delft University of Technology, The Netherlands

Abstract—Decentralized applications, also known as dApps,
are the new paradigm for writing business-critical software.
Recruiting developers with appropriate qualifications and skills
for this activity is key, yet challenging. The main problem is that
the portfolio of developers is usually scattered across centralized
platforms like GitHub and LinkedIn, and vendor locked. This
can result in an incomplete impression of their capabilities.

We address this problem and introduce DevID, a blockchain-
based portfolio for developers. Over time, this portfolio enables
developers to build up a trustworthy collection of records that
showcase their capabilities and expertise. They can import data
assets from third parties into a unified DevID portfolio, add
projects and skills, and receive endorsements. All portfolio
records are stored on a scalable distributed ledger and owned by
developers themselves. The essential idea is to exploit the tamper-
proof property of the blockchain while providing durable storage.

To demonstrate the practical value of DevID, we build the
competition-based platform, dAppCoder, for the development of
decentralized applications. On dAppCoder clients are able to
submit their ideas and developers can find work. dAppCoder
utilizes DevID portfolios to match these clients and developers.
We fully implement our ideas and conduct a deployment trial.
Our trial demonstrates that DevID is efficient at storing portfolio
records.

Index Terms—Unified Portfolio, Decentralized Applications
Development, dApp Development Platform, Developer Reputa-
tion and Identity, Distributed Ledger Technology

I. INTRODUCTION

Decentralized applications, also known as dApps, allow for

contractual logic that runs without the need for trusted inter-

mediaries. Finding the right talent to develop these business-

critical applications is becoming a real problem [1]. Yet, many

software developers are looking for work. Matching clients and

reputable developers is at the core of profit-driven companies

such as Upwork. However, each platform only provides access

to a subset of all available work and developers.
The main problem is that centralized approaches lead to

fragmentation and lock-in effects [2]. Many software devel-

opers have their data fragmented across multiple platforms,

like GitHub and LinkedIn. Each platform only yields a partial

impression on the capabilities and background of a developer.

Moreover, data assets are usually locked to one platform and

cannot easily be reused across different services.
Another issue with centralized approaches is data authority.

It raises much discussion in our society, mainly controlled by

data-driven corporates. By agreeing to the terms of service of

a company, one essentially gives them authority over most of

the personal data being shared.

This work was funded by NWO/TKI grant 439.16.614.

There currently is no independent platform for developer

portfolios without fragmentation, lock-in, and autonomy over

all data. Availability of such a platform would increase effi-

ciency and effectiveness when matching reputable developers

looking for work and clients that are in need of talent.

We address this deficiency and present DevID, a unified

portfolio specifically made for dApp developers. An impres-

sion of such a portfolio is given in Figure 1. DevID portfolios

are powered by a scalable blockchain ledger, used for durable

storage of records. Developers can add tamper-proof records

to their portfolio. These records are fully managed and owned

by developers themselves.

To show the practicality of DevID, we build a competition-

based platform for crowdsourcing the development of decen-

tralized applications, named dAppCoder. Crowdsourcing is a

relatively new model for software development, where an open

call is made for the documentation, design, coding, and testing

of software [3]. We believe that a single, public, and open

market is preferable compared to a centralized solution with

fragmentation and lock-in effects.

The main contributions of this work are tri-fold:

• DevID: a unified portfolio specifically for dApp develop-

ers, powered by a pairwise distributed ledger (Section III).

• dAppCoder: our application to crowdsource the develop-

ment of decentralized applications (Section IV).

• A deployment trial of DevID and dAppCoder, which

demonstrates the practicality of our work (Section V).

II. PROBLEM DESCRIPTION

The main challenge is to create a digital portfolio that gives

an accurate impression of the capabilities and expertise of

a developer. We now elaborate on two requirements for this

portfolio and clarify the problems we have to address.

Fig. 1: An impression of a DevID portfolio.

158

2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON)

978-1-7281-1264-0/19/$31.00 ©2019 IEEE
DOI 10.1109/DAPPCON.2019.00030

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

Wallet

Code Execution Environment

DAppCoder Client

Submission Validator
WalletWallets

TransactionsFraud ManagementF

Scalable Blockchain Fabric

Distributed Storage

Tamper-proof Developer Portfolio

Trusted
Notary
Service

DevID

DApp-
Coder

Fig. 2: The architecture of DevID and dAppCoder.

First, we require that developers are able to import existing

data from other platforms into their portfolio. This streamlines

the bootstrapping process of a portfolio with relevant records.

The problem, however, is to ensure that data being imported

actually belongs to the user importing it. This is an essential

requirement to ensure trustworthy portfolios.

Second, we require our developer portfolio to be indepen-

dent of any trusted intermediary. Blockchain technology is

increasingly being used as middleware for building powerful

decentralized applications without centralized authority. For

example, platforms like Ethereum and EOS enable developers

to write and deploy smart contracts, self-executing code that

enforces agreements between two or more parties [4]. How-

ever, most blockchain fabrics are not suitable for large-scale

storage of portfolio records, or for data storage in general.

Given these two requirements, the research question of this

work is as follows: How can we provide software engineers
with a unified developer portfolio, efficient at storing tamper-
proof and accurate data records they control themselves?

III. DEVID: BLOCKCHAIN-BASED PORTFOLIOS FOR

SOFTWARE DEVELOPERS

We now present our unified portfolio, named DevID. The

architecture is given in Figure 2. This figure also includes the

architecture of dAppCoder, our platform to crowdsource the

development of decentralized applications. dAppCoder itself

is discussed in Section IV.

A. Supporting Generic Storage

We show how DevID portfolios support generic storage of

records and elaborate on different record types.

Statistics: The first record type we consider is statistics,

quantifiable and verifiable numbers that represent a specific

developer metric. For example, these records could represent

developer statistics like the number of years of programming

experience, or the total number of code reviews given. A

visualization of these records is shown in Figure 1 under the

section “Developer in Numbers”.

Projects: Developers can add projects that they worked

on to their DevID portfolio. In Figure 1, this information

is displayed under the section “Top Projects”. Optionally,

references to projects can be added to a DevID portfolio, like a

link to a GitHub repository or to the hash of a specific commit.

Skills: Developers can add skills to their DevID portfolio.

We consider the ability to highlight proficiency in specific

programming languages and familiarity with blockchain plat-

forms an essential feature of a developer portfolio. It aids

programmers in finding projects that match their expertise, and

it enables clients to find developers that fit their projects best.

For instance, applications that have access to DevID portfolios

can filter available developers on one or multiple skills.

Endorsements: The final record type we define is en-

dorsements. Developers can endorse other developers (e.g.,

by writing a letter of recommendation) or endorse specific

skills of others. Skills and endorsements can also be imported

from other platforms like LinkedIn. How we achieve this, is

discussed in the next section.

B. Unifying Developer Data

We now discuss how to import developer data from multiple

platforms and how to verify it for correctness.

Importing developer data: DevID allows developers to

import relevant information from different platforms into their

portfolio. For example, they can import data from LinkedIn

(e.g., skills or past projects) or from GitHub (e.g., the number

of followers and code contributions). Importing can be done by

querying their public interfaces (APIs) and request the relevant

data. To store the data in the portfolio, one can either add a

reference to the (external) data or copy the data assets into

the portfolio. To reduce dependency on third-party services,

we choose to copy the data and store it within a portfolio

record.

Verifying developer data: As discussed in Section II, it is

essential to ensure that imported data actually belongs to the

developer importing it. We propose two solutions to achieve

trustworthy importation of data: challenges and TLS auditing.

The first solution is to pose a challenge where the developer

importing the data, proves that they have control over this

data. For example, when importing data from GitHub, we can

require a public identifier (e.g., a public key) of the developer

to be part of the “bio” profile field. This information can then

be verified for correctness by other users who query the public

GitHub API. We call users who verify data witnesses. While

this is a basic mechanism to ensure the accuracy of imported

data, it heavily depends on the availability of a public API.

The second solution is TLS auditing [5]. The key idea is to

proxy a TLS connection through a random witness, which then

verifies and signs the data after the TLS connection terminates.

When the TLS session finishes, the client gives the witness the

private key used to decrypt HTTPS responses from the web

service. Note that this way the witness is not able to decrypt

the request made to the web service, which likely includes

credentials or access tokens. The role of a witness can either

be fulfilled by other entities in the network, or by a trusted

159

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

(a) Linear ledger (Ethereum). (b) DAG ledger (IOTA). (c) Pairwise ledger (Nano).

Fig. 3: Three different structures of distributed blockchain ledgers. Each arrow points to the subsequent block in the chain.

notary service. Depending on the significance of data being

imported, multiple witnesses can be used for this. Compared

to challenges, TLS auditing works when access to a public API

is absent but is more advanced. Our lab has implemented an

advanced TLS auditing mechanism, which is currently under

a security audit.

C. Verified Identities

To further improve trustworthiness of DevID portfolios, de-

velopers can optionally verify their digital identity. A verified

identity is uniquely linked to a real-world entity. Software built

on DevID can give preferential treatment to developers that

have verified their identity. For example, an application can

ignore endorsements that are given by unverified developers.

Identity verification can be done with an attestation given

by a trusted third party like the government or a notary.

Enforcing strong, long-lived identities in DevID is comparable

with account validation that many centralized platforms use

(e.g., the verification of a phone number). The requirement

for verified identities addresses the Sybil Attack, where an

adversary assumes multiple fake identities to influence or

subvert the network [6].

D. Efficient Blockchain Storage

DevID requires a blockchain fabric that can store tamper-

proof and accurate data records. We now explore three com-

mon blockchain structures, displayed in Figure 3.

Linear ledger: Figure 3a shows the linear blockchain

ledger used by Ethereum. The fundamental property of this

ledger is that at least a majority of users agree on the exact

sequence of transactions. A global consensus mechanism like

Proof-of-Work or Proof-of-Stake prevents the double-spend

attack where a malicious user intentionally creates a fork

of their chain [7]. While providing a high level of consis-

tency, the transaction throughput of these ledgers is often

not high enough to facilitate record creation and modification

by millions of users. This motivates us to consider different

blockchain structures for portfolio storage.

DAG ledger: Another blockchain structure is the Directed

Acyclic Graph (DAG) ledger, where each block can be refer-

enced by multiple other blocks. This ledger structure, shown in

Figure 3b, is adopted by blockchain platforms like IOTA and

Dagcoin [8] [9]. IOTA is optimized for micro-payments within

Internet-of-Things, and Dagcoin advertises itself as data stor-

age for arbitrary data (e.g., documents or ownership records).

Since these ledgers allow for different consensus mechanisms,

transaction throughput is often superior compared to that of

linear ledgers. However, they usually do not have the same

consistency guarantees. While these ledger structures are more

suitable for data storage, we consider current implementations

unfit for developer portfolios. The reason is that they either

rely on a centralized coordinator (IOTA) or a fixed group

of witness nodes (Dagcoin). Instead, our goal is to devise a

portfolio infrastructure without any authority with leveraged

permission.

Pairwise Ledger: A third blockchain structure we con-

sider is the pairwise distributed ledger. The key property of

this ledger, given in Figure 3c, is that each user maintains

and grows their individual chain with transactions. Each

block holds exactly one transaction and optionally contains

a (hash) pointer to a transaction in the individual chain of

another user. Blockchain fabrics like R3 Corda, Nano, and

TrustChain, use pairwise ledgers as their underlying data

structure [10] [11] [12]. These platforms address the double-

spending attack either by a trusted notary (Corda), a weighted

voting system (Nano) or by guaranteed eventual consistency

(TrustChain). In general, they provide superior scalability

compared to linear ledgers as used by Bitcoin and Ethereum

but lack global consensus.

We strongly believe that the pairwise distributed ledger is a

suitable data structure to store portfolio records as transactions.

Compared to linear and DAG ledgers, all data of a portfolio

owner is local to their own individual ledger and maintained

by themselves. Pairwise distributed ledgers enable selective

queries of data stored on the chains of other members, without

the need for full data replication across the network. In

DevID, each individual ledger stores all data associated with a

single portfolio, in a tamper-proof manner, and without global

agreement.

E. Storing Large Data Assets

While pairwise distributed ledgers are suitable for storing

small portfolio records, they are not suitable for storing

arbitrary large data assets. Such data assets can include source

code, documentation, and reviews. To overcome this, we intro-

duce an off-chain distributed storage solution that offers data

160

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The user interface of DAppCoder, our application to crowdsource the development of decentralized applications.

immutability and scalability. Figure 2 shows the distributed

storage, which comprises the lowest layer in our architecture.

Suitable distributed storage solutions for our work are a

Distributed Hash Table (DHT) like Kademlia, a BitTorrent

swarm or the InterPlanetary File System (IPFS) [13] [14] [15].

These solutions enable users to store large data assets, without

involvement of a trusted third party. Large data is inserted in

the distributed storage back-end, and a reference to the data

(i.e., a content hash) is included in the on-chain transaction.

IV. DAPPCODER: CROWDSOURCING DEVELOPMENT OF

DECENTRALIZED APPLICATIONS

By extending the DevID portfolio architecture and record

types, we create a competition-based crowdsourcing platform

for the development of decentralized applications. Running

completely without servers, our platform named dAppCoder

matches clients and dApp developers. The architecture of

dAppCoder is presented in the upper layer of Figure 2 and

the user interface is shown in Figure 4. We now elaborate on

the main functionalities of dAppCoder.

A. Creating Projects

Clients that want their idea realized (e.g., the implemen-

tation of a specific smart contract) can create a new project

in dAppCoder. Creating a new project requires the client to

specify a project title, requirements, a submission deadline,

the number of testers needed for each submission, and a list

of skills needed to work on the project. When creating a new

project, a single portfolio record with all project information

is constructed, appended to the individual ledger, and dissem-

inated in the network. Since the project requirements might

be of arbitrary length, we store it in the distributed storage

back-end and embed a pointer to it in the portfolio record.

For each new project, the client generates a project keypair,

which consists of a public and private key. These keys are

used when releasing the submissions for a project, which is

discussed in Section IV-B.

To incentivize developers to work on a particular project,

each project has a fixed monetary reward which is disbursed

by the client to the developer with the best submission. Prior

to posting a new project, the client determines the height

of the reward and transfers it to a Trusted Notary Service
(shown in Figure 2). This compensation, put into escrow,

directly addresses an attack where clients flood the system with

invalid or irrelevant projects. The trusted notary can either be

a centralized authority or an (Ethereum) smart contract that

interacts with the dAppCoder application through oracles.

Each project goes through two phases during its lifetime:

a submission and a testing phase. During the submission

phase, developers can create submissions for a project until

the submission deadline (which is determined by the client).

The duration of the testing phase depends on the time it takes

for the project to accumulate the required number of testers.

B. Creating Submissions

Developers looking for work can browse through the list

of open projects, or filter them based on the skills they have

added to their DevID portfolio. When a developer has found

an interesting project, they work towards a submission. A

submission must consist of source code and documentation,

which are inserted in the distributed storage back-end. For each

submission, a new portfolio record is created with a pointer to

the project and submission files. Incoming submissions after

the submission deadline has passed, will not be considered for

testing.

To prevent a free-riding attack where a developer copies the

solution of another participant, the content of each submission

is encrypted with the (public) project key [16]. To ensure that

testers can decrypt submissions, the client sends the private

project key to them after the submission deadline has passed.

C. Testing Submissions

After the submission deadline passed, all submissions

should be tested by other developers. For simplicity, we as-

sume that the client selects appropriate testers for submissions,

based on their expertise (indicated by their DevID portfolio)

and the total number of submissions tested in the past. To

incentivize developers to test submissions, testing activities

161

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

will be prominently displayed on their DevID portfolio. The

testing phase consists of two phases, where tests are written

and verified. To avoid collusion between developers, we re-

quire that individuals who have created a submission, written

tests, and verified these tests, are not affiliated.

Writing tests: First, testers write tests to verify the correct-

ness of a submission. These tests can be used to expose critical

vulnerabilities or programming errors in business-critical code.

If a tester found such an error, they can mark the submission

for exclusion and should provide a test that highlights it.

Besides writing tests, each tester grades the submission

based on compliance to the specifications. The given score

can range from "very low" (-2), "low" (-1), "neutral" (0),

"sufficient" (1) or "high" (2).

Verifying tests: Second, developers inspect the tests, written

by testers in the previous phase. In particular, thoroughness

and completeness of the tests written by a specific tester will

be graded by giving a similar score as in the previous phase.

D. Paying Out Developers

When the testing phase of a project ends, the best submis-

sion is determined by having the highest average score rating.

The developer with the best submission is compensated for the

effort. Since all reviews are public, the trusted notary service

is able to transfer the reward to the eligible developer. This

reward is transferred to cryptocurrency wallets, which can be

added to dAppCoder.

V. IMPLEMENTATION AND DEPLOYMENT TRIAL

Next, we elaborate on the implementation of both the DevID

portfolio and the dAppCoder application. We also discuss our

deployment trial and present the results.

A. Our Implementation

We have implemented both DevID and dAppCoder in the

Python programming language. Our implementation consists

of all components shown in Figure 2, except for the trusted

notary service. The graphical user interface of dAppCoder is

implemented with the Qt5 library and communicates with the

back-end over a RESTful API. The open source implementa-

tions of both DevID and dAppCoder are available online.1

We build DevID, and by extension dAppCoder, on the

TrustChain ledger introduced by Otte et al [10]. We identified

two advantages of TrustChain over other pairwise distributed

ledgers like R3 Corda and Nano. First, TrustChain focuses

on fraud detection instead of prevention and as a result does

not require network-wide consensus. This makes TrustChain

a lightweight and simple data structure. Second, TrustChain is

already used as transaction fabric within a self-sovereign, de-

centralized identity system, described in the work of Stokkink

et al [17]. Availability of a self-sovereign identity system

aligns with our requirement for strong, long-lived identities

(see Section III-C). We use the InterPlanetary File System

(IPFS) to store large data assets like project specifications,

submissions and code reviews. Users can import statistics from

1https://github.com/tribler/dappcoder

0

30

60

90

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trial Participants

Tr
an

sa
ct

io
n

C
ou

nt

Transaction

Import records

Add skill

Endorse skill

Create project

Review submission

Create submission

Fig. 5: Results from our deployment trial.

their GitHub profile using the challenge mechanism described

in Section III-B.

B. Deployment Trial

To assess the feasibility of dAppCoder and to get insight

into the efficiency of the TrustChain ledger, we conduct a

deployment trial. We present the trial setup and results.

Setup: For our trial, we recruited 15 participants among

local staff and students of our faculty. To bootstrap the appli-

cation, we initiated dAppCoder with five projects ourselves.

Two of these projects asked developers to resolve one or

more bugs in a piece of Python code. The other three projects

asked the developer to implement a small application. Since

only a fraction of our users is familiar with the development

of decentralized applications, we accepted submissions in

other programming languages during our trial, like Java. We

collected data and observed the growth of the distributed

ledger over a period of five working days. During this time,

developers were free to use the application as they see fit.

Results: Figure 5 shows the growth of the TrustChain

ledger when more participants join the trial. Each entry on

the horizontal axis represents the state of the ledger after a

participant was introduced, and the vertical axis shows the

transaction count for the six different types of transactions.

When more participants join, the distribution of transaction

types on the ledger changes slightly. We observe that the

growth of projects over time decreases, and users focus more

on creating submissions and reviews. Another observation is

that the number of skills added by each developer grows

rapidly, but the growth of endorsements stays behind.

At the end of our deployment trial, the average transaction

size in serialized form is 0.6 kB. The total size of all

transactions stored on the distributed ledger is 65.4 kB. Each

individual ledger stores on average 7.2 transactions, with an

average size of 4.1 kB. In comparison, when using a linear

ledger like Bitcoin, each user is required to store the entire

global ledger or parts of it. The time required to append

new transactions to the TrustChain ledger is in the range of

milliseconds and not of influence on the user experience. The

162

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

initial results of the trial look promising, and we are ready for

further evaluation of dAppCoder and DevID portfolios.

VI. RELATED WORK

We are the first to build a tamper-proof and unified devel-

oper portfolio, to the best of our knowledge. Already in 1995,

research has been conducted, that explores the advantages of

online electronic portfolios over traditional resumes, particu-

larly within an educational environment [18] [19]. The emer-

gence of the open source software paradigm enabled develop-

ers to use code contributions as proof of verifiable technical

expertise and to build an online reputation [20]. The work of

Cai et al. explores how this data can be used to construct a

theoretical reputation model, and what metrics would be best

suited for this [21]. Other work is focused on visualization

tools to highlight contributions of the individual developer on

platforms like GitHub or StackOverflow [22] [23] [24]. Their

research is primarily focused on the design and evaluation of

models to represent the technical skills, based on data from

open source projects. The focus of this work is on combining

records from different platforms and presenting them in a

unified portfolio.

The evolution of crowdsourcing and the benefits are well-

studied topics with an extensive literature corpus [3]. Top-

Coder Inc. is an example of a crowdsourcing platform where

clients can outsource software contributions to developers in a

competition-based environment [25]. In 2017, Li et al. intro-

duced CrowdBC, a decentralized blockchain-based framework

for crowdsourcing [26]. CrowdBC is a platform to crowd-

source generic micro-tasks and is not suitable to crowdsource

development of decentralized applications. Lu et al. devised

a privacy-preserving crowdsourcing mechanism on top of an

open blockchain [27]. Buccafurri et al. introduce TweetChain

and show how to build a crowdsourcing application which

stores all information on Twitter timelines [28]. TweetChain is

comparable with individual ledgers in TrustChain but depends

on a central authority for dissemination and storage of data

(Twitter). In comparison to most of the research performed

on blockchain-based crowdsourcing, this work focuses on a

specific use-case, namely crowdsourcing the development of

business-critical applications.

VII. CONCLUSION

We have presented DevID, a blockchain-based portfolio for

developers. DevID addresses the fragmentation and lock-in of

developer data across different platforms with a mechanism

to import data from third-party services. By building upon

a pairwise distributed ledger, DevID is capable of storing

tamper-proof records and does not depend on any trusted party.

Portfolio records are fully managed by developers themselves.

We have proven the potential of DevID by building a

crowdsourcing application for the development of decentral-

ized applications. Our application, dAppCoder, matches clients

and reputable developers. With a deployment trial, we have

demonstrated that dAppCoder is feasible.

Future work is focused on a large-scale deployment of

dAppCoder and better support for specific bug bounties. We

schedule to release in the first quarter of 2019. Using our

TLS auditing mechanism, we plan to expand DevID with ad-

ditional record importation from other platforms, in particular,

LinkedIn and StackOverflow. Finally, we aim to explore the

use of DevID within other domains besides crowdsourcing.

REFERENCES

[1] Nasdaq, “The blockchain developer shortage: Emerging trends
and perspectives,” URL https://www.nasdaq.com/article/the-blockchain-
developer-shortage-emerging-trends-and-perspectives-cm701294, 2016.

[2] J. Pouwelse, A. de Kok, J. Fleuren, P. Hoogendoorn, R. Vliegendhart,
and M. de Vos, “Laws for creating trust in the blockchain age,” European
Property Law Journal, vol. 6, no. 3, pp. 321–356, 2017.

[3] T. D. LaToza and A. van der Hoek, “Crowdsourcing in software engi-
neering: Models, motivations, and challenges,” IEEE software, vol. 33,
no. 1, pp. 74–80, 2016.

[4] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[5] “Tlsnotary - a mechanism for independently audited https sessions,” URL
https://tlsnotary.org/TLSNotary.pdf, 2014.

[6] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[7] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in iNetSec. Springer, 2015, pp. 112–125.

[8] S. Popov, “The tangle, iota whitepaper,” 2018.
[9] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015.

[10] P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A sybil-resistant
scalable blockchain,” Future Generation Computer Systems, 2017.

[11] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,”
URL https://nano.org/en/whitepaper, 2017.

[12] R. G. Brown, “Introducing r3 corda: A distributed ledger designed for
finanial services, 2016,” 2017.

[13] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[14] B. Cohen, “The bittorrent protocol specification,” 2008.
[15] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[16] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Keep your promise:

Mechanism design against free-riding and false-reporting in crowdsourc-
ing,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 562–572, 2015.

[17] Q. Stokkink and J. Pouwelse, Deployment of a Blockchain-Based Self-
Sovereign Identity, 1st ed. United States: IEEE, 8 2018, pp. 1336–1342.

[18] D. Riggsby et al., “Electronic portfolio: Assessment, resume, or mar-
keting tool?.” 1995.

[19] H. Barrett, “Electronic teaching portfolios.” 1999.
[20] D. Riehle, “How open source is changing the software developer’s

career.” IEEE Computer, vol. 48, no. 5, pp. 51–57, 2015.
[21] Y. Cai and D. Zhu, “Reputation in an open source software community:

Antecedents and impacts,” Decision Support Systems, vol. 91, pp. 103–
112, 2016.

[22] T. Jaruchotrattanasakul et al., “Open source resume (osr): A visualization
tool for presenting oss biographies of developers,” in IWESEP. IEEE,
2016, pp. 57–62.

[23] R. Saxena and N. Pedanekar, “I know what you coded last summer:
Mining candidate expertise from github repositories,” in CSCW. ACM,
2017, pp. 299–302.

[24] X. Chen and A. Sarma, “Supporting comparison of developer profiles
across online communities,” 2016.

[25] K. Lakhani, D. Garvin, and E. Lonstein, “Topcoder (a): Developing
software through crowdsourcing,” 2010.

[26] M. Li et al., “Crowdbc: A blockchain-based decentralized framework
for crowdsourcing,” IACR Archive, vol. 444, p. 2017, 2017.

[27] Y. Lu et al., “Zebralancer: Private and anonymous crowdsourcing system
atop open blockchain,” arXiv preprint arXiv:1803.01256, 2018.

[28] F. Buccafurri et al., “Tweetchain: an alternative to blockchain for crowd-
based applications,” in ICWE. Springer, 2017, pp. 386–393.

163

Authorized licensed use limited to: TU Delft Library. Downloaded on September 10,2021 at 08:04:58 UTC from IEEE Xplore. Restrictions apply.

