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Rigid platelike particles displaying interfacial slip can attain a constant orientation in
a shear flow when the slip length is sufficiently large. But actual thin particles such
as single-layer graphene are flexible and prone to bending deformations when exposed
to shear stress. To study the effect of bending deformation on the dynamics of flexible
platelike particles with large interfacial slip in a shear flow, we develop a two-dimensional
(2D) fluid-structure interaction model. Our model is based on coupling the Euler-Bernoulli
beam equation with a boundary integral method to solve the hydrodynamic stress at the
particle surface. Emphasis is placed on resolving accurately the stress distribution at the
edges of the particle. We find that (i) a stable alignment occurs even for relatively flexible
particles and that (ii) edges effects on the shape of the plate are important for values of
the length-to-thickness aspect ratio as large as 100. Our results are particularly relevant in
view of recent research on the hydrodynamics of suspended flexible sheets made of 2D
nanomaterials.

DOI: 10.1103/PhysRevFluids.6.084102

I. INTRODUCTION

Recent developments in the study of colloidal dispersions of atomically thin sheets made of
two-dimensional (2D) nanomaterials (e.g., graphene and graphene oxide [1,2], boron nitride [3],
molybdenum disulfide [4]) are generating interest into the flow dynamics of deformable thin
colloidal particles. When exposed to sufficiently large shear stresses, such platelike particles are
prone to bending deformations [5]. The bending energy of single-layer graphene is in the range
of 40–80kT [6,7], where kT is the thermal energy. This range is similar to those characterizing
lipid bilayers [8,9]. Graphene oxide has an even smaller bending energy of the order kT [10].
Besides their proneness to bending, platelike particles may exhibit slip lengths that are large in
comparison to the particles thickness [11,12]. At large Péclet numbers, interfacial slip can suppress
the periodic rotation of a rigid platelike colloid suspended in a linear shear flow field, leading to the
particle being aligned indefinitely at a small angle with respect to the flow direction [12]. Jeffery’s
theory, developed for no-slip particles, instead predicts periodic rotations and alignment only in
a time-average sense [13]. Therefore, a better understanding of the combined effects of slip and
bending deformations in the microhydrodynamics of platelike particles is needed.

While there is a rich theoretical literature on the rotational dynamics of rigid platelike colloidal
particles in linear shear flow [14–16], current investigations on the dynamics of flexible sheets (e.g.,
Refs. [17,18]) rest on a computational framework initially developed for slender flexible particles
such as fibers [19] and ribbons [20]. This framework, which is inspired by the slender-body approx-
imation [21,22], relies on the assumption that the sheet can be represented as a planar distribution
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FIG. 1. (a) Sketch of the central line x0 (red dashed line) of a flexible 2D platelet in a shear flow field γ̇ y.
The rotational angle φ is measured in the anticlockwise direction from êx , and θ (s) in the clockwise direction
from ês0 . (b) Undeformed surface of the 2D platelet. The parameter ξ is the radius of curvature of the corners.

of regularized stokeslets [23]. Each stokeslet is associated with a restoring elastic force calculated
from the bending energy of the sheet. Alternative methods rely on a similar approximation whereby
the sheet is instead assumed to be made of a planar distribution of beads and rods [24,25]. In all of
these study, hydrodynamic slip has not been considered, and the effects of the ends of the particles
are usually neglected. However, the study of the flow dynamics of rigid platelets with slip reveals
the importance of accounting for the edges. The aforementioned slip-induced steady alignment of
the particle near the flow direction is a consequence of a delicate balance between the hydrodynamic
stress over the flat surfaces of the particle and the stress at the edges [12]. Therefore, it is essential
to develop a model for flexible platelike particles with slip that include the effects of the edges.

In this paper, we use a two-dimensional model to investigate the effect of deformability on the
dynamics of a platelike particle with a large hydrodynamic slip length as compared to the particles
half-thickness. The hydrodynamic stress at the particle surface is computed with a boundary integral
method (BIM) for Stokes flow, accurately resolving the large stress that form at the edges. The
shape of the elastic body suspended in a shear flow is calculated via an iterative method that couples
the Euler-Bernoulli beam equation for the deformation of the centerline of the particle with the
hydrodynamic load computed using BIM. Similar approaches have been used to find the shapes of
flexible rods, either adhered to a wall [26,27] or flowing through a narrow channel [28]. A significant
feature of our model is that the body is considered deformable everywhere except at the edges:
the edges are treated as rigid elements that provide force and torque boundary conditions for the
Euler-Bernoulli beam equation. In addition, our model accounts for the rigid body rotation, enabling
a detailed comparison between rigid and flexible platelets in terms of alignment and surface stress
distribution.

Since we are motivated by understanding the flow dynamics of 2D nanomaterials, we employ
bending rigidity and shear stress values typical of graphene suspensions, as well as aspect ratios
as large as allowed by the computational constraints. Besides 2D nanomaterials, the results should
also be applicable to clays [29], two-dimensional polymers [30], and extended aromatic molecules
[31,32].

II. FORMULATION

A. Description of the problem

We consider an inextensible platelike particle suspended in a linear shear flow field u∞ = γ̇ yêx.
For the simulation, we adopt a two-dimensional model: The platelet has infinite extent in the
direction of the vorticity (êz) with a normal in the flow-gradient plane (êx, êy). Deformations and
rotations of the platelet are thus restricted to the (êx, êy) plane [Fig. 1(a)]. For three-dimensional
platelets, such as disks, deformations in the êz direction are possible. However, calculations of the
traction over a clamped axisymmetric disk with the no-slip boundary condition reveals that the
traction in the êz direction is subdominant to the traction in the flow-gradient plane [15]. Therefore,
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our two-dimensional approximation is expected to hold for any platelike particle oriented with its
longitudinal axis in the direction of the shear.

The undeformed platelet is assumed to be symmetric about the two orthogonal lines passing
through its center. In addition, the center of the platelet is initially at the origin of the coordinate
system, so the platelet rotates without translating. Because of the symmetries of the undeformed
configuration, deformations are symmetric with respect to the line y = 0 at all times. The platelet
has length 2a and maximum thickness 2b.

While our fluid-structure interaction method can be applied to any slender surface, we use a
surface (line in 2D) that provides the best fit, from a hydrodynamic point of view, to molecular
dynamics simulations of graphene platelets in Newtonian fluids [12,33] [Fig. 1(b)]. Graphene
platelets are layered material made from stacks of carbon layers. For a single layer graphene platelet,
the surface is approximately a rectangle with half-thickness b = ξ and with semicircle edges of
radius ξ . Here ξ corresponds to the effective radius of the carbon atoms; for graphene in water,
ξ ≈ 1.8–2.5 Å [32,34]. For multilayer graphene, b(n) = (n − 1)dgg/2 + ξ , where dgg ≈ 3.35 Å
[35] is the interlayer distance and n to the number of layers. For n = 1, b ≈ 0.25 nm and for n = 10,
b ≈ 1.8 nm. For n > 1, each edge region consists of a flat face perpendicular to the centerline of
half-length b − ξ , as well as two rounded corners of radius ξ . The edges are more blunt the larger
n. In general, the bending rigidity of the particle σb will depend on n. For a homogeneous plate, the
bending rigidity σb ∝ b3 [36]. For a multilayer graphene platelet, this relationship appears to work
well for multilayer graphene with n � 10 [37]. For single layer graphene σb ≈ 1–2 eV [6,7], and
for bilayer graphene σb ≈ 36 eV [38].

The platelet surface is parametrized as S = (s0(s) ± h(s) sin θ (s), n0(s) ± h(s) cos θ (s)) : −a �
s � a. Here x0(s) = (s0(s), n0(s)) is the centerline of the platelet, h(s) is the half-thickness of the
platelet (in the direction normal to the centerline) and θ (s) is the clockwise angle from ês0 to the
tangent of the centerline x0(s) as shown in Fig. 1. The frame (ês0 , ên0 ) is the frame of reference
attached to the center of the particle. Since the centerline is inextensible, it can be expressed in
curvilinear coordinates as:

n′
0 = − sin θ, s′

0 = cos θ, θ ′ = κ, (1)

where the prime denotes the derivative with respect to s. In the laboratory frame (êx, êy), the tangent
to ês0 is inclined by an angle φ with respect to êx. For rotation of the platelet in the direction of the
undisturbed vorticity associated to the external flow field, φ < 0. Because the curvilinear coordinate
system is fixed with respect to the particle, we have θ (0) = 0.

For the specific surface considered here, h(s) is symmetric about s = 0. Under this parametriza-
tion, the surface S is split in two regions (Fig. 1): a “slender” region {h(s) = b/a : −L � s � L} for
L = a − ξ , and an “edge” region of length ξ for L < |s| � a.

The difference between the present formulation and the one of Refs. [12,33] is that the slender
region is now free to deform due to the applied external hydrodynamic force and torque. The slender
region of the platelet deforms to leading order like a flexible beam with bending rigidity σb. At the
edge regions, however, the slender approximation no longer holds. It is thus assumed that the edges
are rigid, as done in Refs. [26,27].

B. Governing equations and fluid-structure interaction

The platelet is freely suspended in a fluid of viscosity η. The flow field u, the pressure field p,
and the stress tensor σ are assumed to satisfy the Stokes equations:

∇ · σ = 0, σi j = −δi j p + η

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (2)

On the platelet surface S, we prescribe a Navier slip boundary condition

usl = λ

η
n × f × n, (3)
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where f = σ · n is the hydrodynamic traction, n is the outward-pointing normal to the surface, usl is
the hydrodynamic slip velocity and λ is the slip length [39,40]. The use of a single slip parameter λ

for the whole surface S leads to a distribution of surface traction that compares well with molecular
dynamics simulations of single- or multi-layer graphene particles in water [12,32].

Due to the high resolution requirement to resolve the flow around a thin body, particularly in
the edge regions, we compute the hydrodynamic load by using the BIM for Stokes flow [41]. The
boundary integral formulation gives the following relation between f , usl and the velocity of the
platelet uD at each point x1 on the surface S:∫

S
n · K(x − x1) · usldS(x) − 1

η

∫
S

G(x − x1) · f dS(x) = uD(x1) + usl(x1)

2
− u∞(x1). (4)

The second-order tensor G and the third-order tensor K are respectively [41]:

Gi j (s, h) = 1

4π

(
−δi j ln r + xix j

r2

)
, Ki jk (s, h) = − 1

π

xix jxk

r4
, r =

√
s2 + h2.

For λ = 0, the term containing the K tensor vanishes and Eq. (4) reduces to the formulation for
a rigid platelet (cf. Ref. [26]). The platelet is free to move with a velocity uD = ṡ0ês0 + ṅ0ên0 +
Dêz × (x1 − x0) + êz × (x1 − xc) + γ̇ ycêx. Here, the first three terms on the right of the equal
sign are associated with the time-dependent deformations of the platelet, and the final terms are
associated with rigid body motion. The term  is the angular velocity of a torque-and-force free
platelet about its center of inertia xc and γ̇ ycêx is the uniform velocity at which the particles
translates. To find , we solve Eq. (4) together with the constraint of zero hydrodynamic torque
[42]

T ≡ êz · a
∫

S
(x − xc) × f dS = 0. (5)

Because x0 is in our case antisymmetric about s = 0, θ (−s) = θ (s), then xc is located at the
center of the platelet. We set xc to be at the center of our choice of coordinate system.

The effect of the hydrodynamic flow field is to exert a distributed force and a distributed
torque over the platelet, which will in turn cause the platelet to rotate and deform. To separate
the contributions of the traction that produce a distributed load normal to the surface of the platelet
from those producing a couple, we split the traction in its antisymmetric and symmetric parts with
respect to the centerline:

�gi(s, h) = Asym{ fi(s, h)} = fi(s, h) − fi(s,−h),

gi(s, h) = Sym{ fi(s, h)} = fi(s, h) + fi(s,−h). (6)

With the above notation, the platelet is subject to external normal and tangential force densities,
respectively gn(s) = g · ên and gs(s) = g · ês, as well as a total torque density

q(s) = êz · {[x+(s) − x0(s)] × f (s, h) + [x−(s) − x0(s)] × f (s,−h)}
= h(s)[�gn0 (s) sin θ (s) − �gs0 (s) cos θ (s)], (7)

acting on the “slender” region of the central line of the platelet. Here x+ is the coordinate of the
top surface of the platelet, and x− the corresponding coordinate of the bottom surface i.e., x± =
(s0 ± h sin θ, n0 ± h cos θ ). Because the edges are treated separately from the slender region in our
fluid-structure interaction model, we also define a (scalar) edge torque and force respectively:

TE (±L) = êz ·
∫

SE (±L)
(x − x0) × f dS,

FE (±L) =
∫

SE (±L)
f dS, FE = FE ,sês + FE ,nên, (8)
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where SE (−L) and SE (L) are the surfaces of the edges regions, and edges torques are calculated
with respect to the points x0(s = ±L), respectively. Usually, this edge torque and force are assumed
to be zero for slender bodies (see, for example, Ref. [19]). When the particle is almost aligned with
the flow, however, the traction on the edge region becomes important: The torque distribution over
a particle aligned with the flow results from a delicate balance between the torque produced over
the slender region of the particle and from the edges [15]. Equations 8 represent the (scalar) edge
torque and force produced from this traction.

The equilibrium equations determining the shape of the centerline are (see Appendix)

σbθ
′′′ + lθ ′ + gn + q′ = 0, l ′ + gs = 0, (9)

to be solved subject to the boundary conditions

σbθ
′(−L) = TE (−L),

σbθ
′′(−L) = −q(−L) + FE ,n(−L),

θ (s) = θ (−s), (10)

θ (0) = 0,

l (−L) = FE ,s(−L).

Here l is the axial tension. Equations (9) represent force balances on the central line, in the
normal and tangential directions, respectively. The equation on the top represents a balance between
the normal elastic restoring forces due to bending σbθ

′′′ and tension l , and the forces due to the fluid.
Equations (9) is identical, for example, as that used in Ref. [43], with the exception that we include
hydrodynamic torque density, edge forces, and edge torques. Equations (9) will be solved together
with Eqs. (10) to find the equilibrium shape of the flexible platelet with slip in shear flow.

Making length, time, and stress nondimensional by using a, 1/γ̇ , and γ̇ η respectively, Eqs. (9)
become

σ̃ θ ′′′ + l̃θ ′ + g̃n + q̃′ = 0, l̃ ′ + g̃s = 0. (11)

Here and in the following, dimensionless units are denoted with a tilde. The dimensionless
equations for the deflection of the platelet [Eqs. (11)] depend on the dimensionless rigidity param-
eter σ̃ = σB/γ̇ ηa3. For a homogeneous material, σB scales as σB ∼ Bb3 [37,46], and for graphene
B = [2.3−7] × 1011 N m−2 [38]. Therefore, the dimensionless parameter can be expressed in terms
of the length to thickness aspect ratio

σ̃ = B

(
b

a

)3 1

γ̇ η
. (12)

Note that this parameter is different from the corresponding parameter for rods, B(b/a)4/(γ̇ η)
[19], because of the different scaling of the second moment of cross-sectional area with b.

A color map of the rigidity parameter σ̃ in the aspect ratio (a/b)–shear stress (γ̇ η) space is shown
in Fig. 2, with some typical values related to graphene. The black line marks σ̃ = 1, the order of
magnitude estimate compatible with the result for the buckling of no-slip plates as predicted from
the model of Ref. [5]. For a given value of γ̇ η, σ̃ varies by orders of magnitude due the inverse cubic
dependence with respect to the geometric aspect ratio. The aspect ratio of typical layered materials
such as graphene and clay platelets can vary dramatically (cf. Ref. [47]). Thus, depending on the
actual aspect ratio of the platelet, a graphene platelet in a typical large shear stress γ̇ η = 2 × 104 Pa
will appear rigid (σ̃ < 1) if a/b � 300, while a platelet with a larger aspect ratio will appear flexible
(σ̃ > 1).
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FIG. 2. Map of nondimensional rigidity parameter σ̃ vs geometric aspect ratio a/b and shear stress γ̇ η.
Full black line: Threshold σ̃ = 1 below which buckling is expected, from Ref. [5]. Vertical dotted red line:
Typical aspect ratio of single-layer graphene (assuming half-thickness 0.5 nm and half-length 0.5 μm). Bottom
horizontal dashed red line: Typical shear stress during liquid-phase exfoliation of graphene, from Ref. [44]
(γ̇ η = 10 Pa). Top horizontal dashed red line: typical maximum shear stress for mixing of carbon nanoparticles
in polymer mixing from Ref. [45] (γ̇ η = 2 × 104 Pa).

III. NUMERICAL METHOD TO FIND STABLE SOLUTIONS

Rigid platelets attain stable aligned solutions in shear flow if the slip length is greater than some
critical slip length λc ∼ b [12]. In this section we describe a numerical procedure to test if a stable
aligned solution also exists for a flexible platelet. We use an iterative method to find such solution
to the coupled Eqs. (4), (10), and (11) as σ̃ decreases from a value corresponding to a rigid platelet
(σ̃ → ∞). Stationary solution corresponds to uD = 0. Under this condition, Eq. (4) simplifies to∫

S
n · K(x − x1) · usldS(x) − 1

η

∫
S

G(x − x1) · f dS(x) = êz × x1 + usl(x1)

2
− u∞(x1). (13)

In contrast to other models such as that applied in Ref. [28], we have included the rotational angular
velocity  since we need to find the orientation of the platelet φ = φc for which (φc) = 0. The
quasisteady “stationary” solution of the platelet at the nth time step t n is found by the following
iterative procedure:

Step 1: Time iteration. Advance the time by an increment dt (n), t n = t n−1 + dt (n), and the
rotational angle of the platelet according to φn = φn−1 + dt (n)n−1.

Step 2: Calculation of the traction. Starting from an initial guess xn ≈ xn,g1 for the configuration
of the central line, solve Eq. (13) to find the corresponding hydrodynamic traction f n,g1 and
rotational velocity n,g1 for a platelet oriented at the angle φn (details are given in Sec. III A).

Step 3: Calculation of the equilibrium shape. Using f n,g1 , find a new equilibrium shape xn,g2 by
solving Eq. (11) using a Newton residual method (details are given in Sec. III B).

Step 4: Convergence of the numerical procedure. Repeat Step 2 and 3 until convergence. If
convergence is achieved, repeat Step 1 to find the inclination angle at the new time t n+1 = dt (n+1) =
dt (n). If no equilibrium shape is found after a maximum number of iterations, reduce the timestep
dt (n) and repeat Step 1.

The existence of a stable solution is determined by monitoring n. If n → 0 as t increases, then
a stationary solution is found. Otherwise, no stable aligned solution exists and the platelet follows a
rotational trajectory similar to that predicted by Jeffery for a rigid particle [13].
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The Newton residual method can converge in just a few iterations, provided that the initial guess
is close to the actual solution. We achieve such good convergence by first computing the deformed
shape for an almost rigid body (σ̃ [1] = 10), before slowly decreasing σ̃ . Here σ̃ [i] represents the
decreasing order values of σ̃ for which a stable aligned solution is found. For the first value, σ̃ =
σ̃ [1], we use the stable solution of a rigid undeformed body oriented at φc as the initial guess, and
for the second, and slightly reduced, value σ̃ [2], we use the final profile from the previous step as
the initial guess. For the following steps, the last two profiles for σ̃ [i − 1] and σ̃ [i − 2] are used
to approximate an initial guess of the profile for the given σ̃ [i]. The guess is calculated from a
two-point extrapolation method for i = 2 and a three-point extrapolation method for all other steps,
using polynomial extrapolation [48].

A. Step 2: Calculation of the traction

To compute f for a given platelet shape and orientation from Eq. (13), we use the BIM scheme
described in Refs. [12,33]. This method involves discretizing f and usl in Eq. (13) as piece-wise
constant functions each centered at the midpoint of N subintervals along the surface. With this
discretization, Eq. (13) results in 2N linear equations for the components of f , which can be
solved given the surface shape and orientation φ of the platelet. This numerical solution for f
is, however, not unique as it is defined up to some function p0n, with n the normal to the surface.
Such nonuniqueness is generic to incompressible flows: an incompressible velocity field is unique
up to a constant ambient pressure p0. For a flat body, this prefactor does not affect the load since
the term p0n cancels from the load distribution gn + q by symmetry. For a deformable body, on the
other-hand, this extra prefactor can induce variations in the load distribution. The thin-plate equation
for the solid (Euler-Bernoulli beam equation), however, implicitly assumes no deformation in the
direction normal to the central line. Hence, we can set p0 = 0 with no error beyond the small error
already accepted by using the Euler-Bernoulli beam theory. To set p0 = 0, we use the precondition
method described by Pozrikidis [49].

To test the validity of our numerical procedure for the computation of f , we compare our results
to the analytical solution for a no-slip cylinder [50] and a slip cylinder (Supplementary Information
(SI) of Ref. [12]). In both cases we find spatial convergence with error proportional to the square
of the grid mesh size (cf. SI of Ref. [12]). We also test our procedure in the limit a/b → ∞ by
comparing to the analytical solution for the rotational drag coefficient Fd for no-slip plates of zero
thickness (Fd → 2πηa3) [51]. We find that FD converges to Sherwood and Meeten’s prediction for
a/b → ∞ for particles of any slip length λ as expected (the torque applied to a plate held fixed in a
rotational flow field becomes independent of λ as a/b → ∞ [33]).

B. Step 3: Calculation of the equilibrium shape

As in Step 2, the platelet is fixed at an orientation φ with respect to the flow and satisfies Eqs. (11)
with the boundary conditions Eqs. (10) for θ , as well as the curvilinear Eqs. (1) with the boundary
conditions s0(0) = n0(0) = 0 for x0. In order to find x0, we first solve Eqs. (11) to find θ , and then
Eqs. (1) to find x0 for a given θ . To numerical solve Eqs. (11), the load distribution (LOAD= gn +
q′) and θ are interpolated onto Nf evenly spaced grid points {LOAD(s1), . . . , LOAD(sNf ) : s1 =
−L, . . . , sNf = 0} and {θ (s1), . . . , θ (sNf ) : s1 = −L, . . . , sNf = 0} by the interpolation polynomial
[52]. The spacing between the points is �s = L/(Nf − 1). Equations 11 with the given boundary
conditions are then discretized using a second-order finite difference scheme [43], to produce a set
of 2Nf linear equations for θ (si ), with i = 1, . . . , Nf . The system of equations is solved using the
Newton residual method [48]. Once θ (si) is found to a given tolerance, then the profile shapes are
found similarly to θ (si ): The curvilinear equations are first discretized to produce a set of 4Nf linear
equations for s0(si ) and n0(si), and this system of equations is then solved by the Newton residual
method to find x0.
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FIG. 3. (a) Polynomial load from Eq. (14) as a function of s̃. (b) Analytical solution θ̂∗ of Eq. (14) as
a function of s̃. Insert: Corresponding profile of out-of-plane displacement. (c) Error between the analytical
solution θ̂∗ and the numerical solution θ̂ at s̃ = −L̃ versus the grid spacing �s̃. The parameters of Eq. (14) are
a1 = 0.47, a2 = 0.005, and a3 = −0.01.

To confirm the O(�s2) spatial convergence, we compare our numerical solution to Eq. (11) with
an assigned polynomial load

θ̂∗′′′ = cs̃3 + a3s̃, (14)

and θ̂∗′
(−L̃) = a1, θ̂∗′′

(−L̃) = a2, θ̂∗(0) = 0, and θ̂∗(s̃) = θ̂∗(−s̃). Here a1, a2, and a3 are arbitrary
parameters and c is an extra variable ensuring that the boundary condition θ̂∗(0) = 0 is met. The
exact solution for θ̂∗ for given values of a1, a2, and a3 is shown in Fig. 3(b) along with the load θ̂∗′′′

in Fig. 3(a) [the hat symbol is used to represent the solution of Eq. (14)]. A comparison between the
analytical and numerical solutions for θ̂∗(−L̃), confirms the O(�s̃2) spatial convergence [Fig. 3(c)].

C. Step 4: Convergence of the numerical procedure

To confirm the convergence of the full numerical procedure involving both hydrodynamic force
calculation from the BIM method and the Euler-Bernoulli beam equation resolution, we compare a
stable solution found for a different number N of surface grid points. Examples of stable solutions
for a rigid and a flexible platelet are shown in Figs. 4(a) and 4(b), respectively. We use the maximum
deformation ñ0(−L̃) to compare the stable solution for different number N of surface grid points.
Figure 4(c) confirms the convergence of ñ0(−L̃) as N is increased. More specifically, for a/b = 10
and λ̃ = 8, we find that a good convergence is obtained for N � 72. For higher aspect ratio, a larger
number of grid points is needed to ensure the resolution of the traction at the edges. Unless otherwise
stated, in our simulations we use N = 120.

FIG. 4. Stable solution for (a) a rigid platelet and (b) a flexible platelet with σ̃ = 0.1. (c) Convergence of
the maximum centerline displacement versus the number of grid points N . Here λ̃ = 8 and a/b = 10.
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FIG. 5. (a) Maximum deflection ñ0(−1) and (b) orientation angle φc for the stable solution, comparing the
cases in which l̃ (s̃) is included in Eqs. (11) (red disks) or excluded from it (black lines), respectively. As in
Fig. 4, λ̃ = 8 and a/b = 10.

IV. ALIGNMENT OF A FLEXIBLE PLATELET WITH SLIP

We adopt the iterative procedure outlined in Sec. III to find stable configurations of a flexible
platelet with slip for different values of the rigidity parameter σ̃ . From here forward, we present
results in nondimensionlized form (where, we recall, we have used a, ηγ̇ and 1/γ̇ as length, stress
and timescales). Our calculations reveal that, as long as the slip length λ̃ is greater than a critical
value λ̃c and the rigidity parameter σ̃ is greater than σ̃c, a stable solution can be found. Our results
also show that the value of σ̃c depends on λ̃ and on the specific shape of the platelet (i.e., its aspect
ratio a/b and the shape of the ends). For the case considered in Fig. 4, with n = 1, λ̃ = 8 and
a/b = 10, we find σ̃c ≈ 0.09.

In what follows, we evaluate the maximum deflection of platelets ñ0(−1) and the equilibrium
angle φc for different values of σ̃ . At constant aspect ratio, a decreasing value of σ̃ corresponds to
an increase in the shear stress. Only values σ̃ � σ̃c are considered, as for σ̃ < σ̃c, our code fails
to converge between Step 2 and Step 3 (the sequence of guess solutions {x̃n,gi} does not converge
as the number of iterations increases). We use n = 1 unless otherwise stated, and we consider a
range of slip lengths spanning from λ̃ � 1 to λ̃ � 1. For typical graphene suspensions, λ̃ � 1
[53], however, the case λ̃ � 1 is in principle possible for extremely small graphene flakes or small
aromatic molecules [32].

Before analyzing the effects of slip and edges, we start by making some observations. First,
the deformation of the platelet at its stable orientation is small in comparison to that expected at the
corresponding value of σ̃ from the buckling theory for no-slip disks [5]. For instance, Fig. 4(c) shows
that for σ̃ = 0.1, the maximum deflection of the platelet is only |ñ0(−1)| ≈ 0.073. One reason for
the small deflection is the orientation of the platelet with the flow. For an elongated particle in
a shear flow, maximum deformations occur when the long axis of the body is oriented along the
compressional axis of the flow, i.e., φ = ±π/4. While this situation is expected for rotating particles
such as no-slip rods and platelets [5,54], it is not the case for slip platelets with large values of a/b,
for which φc � 1 [12]. For φ = 0, the compressive component of the flow (g̃s) is equal to zero for
an undeformed platelet and is small for a slightly deformed platelet. For a platelet oriented near
the flow direction, the deflection of the centerline thus occurs mainly due to the contribution from
g̃n rather than g̃s. As a consequence, the axial tension l̃ is nearly constant and equal to its value at
the boundary, l̃ ≈ 0. Figure 5 illustrates, for the case a/b = 10, that whether the term proportional
to l̃ is included or not in Eqs. (11), the values of ñ0(−1) and φc do not change appreciably. For
this reason, in the following, we present simulation results obtained by neglecting the axial tension
terms in Eqs. (11).
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FIG. 6. Static profiles and corresponding hydrodynamic load of a platelet for different values of σ̃ . (a) Load
distribution g̃n + q̃′ in the slender region of the platelet. Inserts: Force (left) and bending moment (right) at −L̃
versus σ̃−1. (b) σ̃ θ versus s̃. Insert: Surface profile (s̃0, ñ0). (c) Normal traction g̃n versus s̃. The vertical dotted
lines marks the location s̃ = −L̃. (d) Torque density q̃ versus s̃. (e) q̃′ versus s̃. As in Fig. 4, λ̃ = 8 and a/b = 10.

The second observation is that, because the deflection is small, the shape of the flexible platelet
can be well approximated by using the load distribution for a rigid flat platelet in Eqs. (11). To assess
when this approximation is accurate, we compare profiles of σ̃ θ ′′′ for finite values of σ̃ with those for
σ̃ → ∞ [Fig. 6(a)]. A value of θ normalized by σ̃ is plotted in Fig. 6(b). Under this normalization,
as σ̃ increases, σ̃ θ collapses onto the curve corresponding to the flat platelet. The profiles of σ̃ θ ′′′
and σ̃ θ corresponding to σ̃ = 1 and 10 are practically identical to those for σ̃ → ∞. For σ̃ = 0.1,
the maximum relative difference in σ̃ θ with respect to the rigid case is 25%. This value is still
quite small, considering the relatively large flexibility of the platelet and the noticeable degree of
deformation |ñ0(−1)| ∼ O(0.1) associated to this stable solution compared to its undeformed shape.

A. Effects of surface slip

We now analyze the effect of slip on the deformations of a flexible slip platelet. Because of the
small deformations, we use as external hydrodynamic load the distribution corresponding to a rigid
flat platelet oriented at its stable orientation angle.

Based on our analysis, the main effect of surface slip is to reduce the torque density q̃(s̃) on the
slender region of the platelet. This effect can be quantified by performing an asymptotic expansion
of Eq. (4) for a platelet oriented at φc. This analysis yields q̃ to leading order in b/a about s̃ = 0
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FIG. 7. Left panels: Torque density at the midpoint s̃ = 0 vs nondimensional slip length; black continuous
lines refer to BIM simulation results, dashed red lines are analytical predictions from Eq. (15). Right panels:
BIM simulations of load due to normal stresses, load due to distributed torque, and ratio of the two quantities,
vs nondimensional slip length for s̃ = −L̃. Central panel: normal load divided by s̃, distributed torque divided
by s̃, and ratio of distributed torque to normal load, again plotted vs nondimensional slip length. The aspect
ratio is (a) a/b = 10 and (b) a/b = 100. In all the plots the quantities are calculated for an undeformed platelet
and φ = φc (if a stable orientation exists) or φ = 0 (if a stable orientation does not exist).

[12]. The result is

q̃(s̃) ∼ b

a

[
1

1 + c1
λ̃

(1−s̃2 )

+ ε(s̃, λ̃)

]
, (15)

where ε(s̃, λ̃) is the additional contribution from the edges which, by symmetry, satisfies ε(−s̃, λ̃) =
ε(s̃, λ̃) and ε(0, λ̃) = 0. The numerical prefactor c1 depends on the geometry of the platelet [12,55].
Our previous analysis shows that for a 2D platelet, i.e., a platelet of infinite depth, c1 = 4/π , and
that for a disk, c1 = 3/2 [12]. The condition φc � 1 is satisfied for a/b � 1 because φc decreases
to zero for a given λ̃ as a/b increases [12,33].

The leftmost panels in Fig. 7 show a comparison of q̃(0) as predicted by Eq. (15) with the
simulation results. Results are plotted as a function of λ̃ for a/b = 10 (top panels) and a/b = 100
(bottom panels). For λ̃ → 0 (no-slip limit), q̃(0) ≈ b/a along the surface, but as λ̃ → ∞, q̃(0)
vanishes because surface slip reduces the traction over the surface parallel to the shear flow.
The leading order analytical solution of q̃(0) is in generally good agreement with the numerical
simulations. The largest differences between the numerical and asymptotic values of q̃(0) occur for
λ̃ � 1 and a/b = 10, which is expected by the O(b2/a2) error of Eq. (15).
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FIG. 8. Maximum deflection ñ0(−1) and orientation angle φc corresponding to the stable solution versus
the inverse bending rigidity σ̃−1, comparing simulations with the full load distribution (solid lines) with
simulations with q̃′ set to zero (disks). Aspect ratio and slip length values are indicated in the figure.

A similar asymptotic analysis reveals that, in the neighborhood of s̃ = 0, the derivative of q̃ with
respect to s̃ satisfies

q̃′(s̃) = b

a
cos2 φc

[
2c1λ̃s̃

(1 + c1λ̃ − s̃2)2
+ ε′(s̃, λ̃)

]
,

where ε′(s̃, λ̃) is the derivative of ε with respect to s̃. Because ε̃(0, λ̃) = 0, q̃ is independent of ε̃

to leading order in s̃. However, ε̃′(0, λ̃) is not zero, and therefore ε′ must be added in the leading
order approximation. In the absence of slip, analytical solutions for ε′ are known for specific edge
shapes [15]. In the present work we compute ε′ and q̃′ numerically via BIM. BIM results, shown
in the central and rightmost panels of Fig. 7, confirm that q̃′ decreases as λ̃ increases and vanishes
asymptotically as λ̃ → ∞.

To understand whether q̃′ contributes significantly to the load distribution and to the platelet’s
deformation, q̃′ is compared to g̃n for s̃ → 0 and s̃ = −L̃ in the central and rightmost panels of
Fig. 7. As expected, for λ̃ � 1, q̃′ is subdominant with respect to gn (the values of λ̃ for which
q̃′ � g̃n need not be large), suggesting that q̃′ can be neglected in Eqs. (11) to leading order for
λ̃ � 1. However, for λ̃ � 1, q̃′ is comparable or even greater than g̃n, especially at the edges.

The fact that q̃′ is comparable to g̃n, even for relatively large values of a/b, may seem coun-
terintuitive. Indeed, for λ̃ = 0, q̃ ∝ b/a as s̃ → 0 and thus q̃′ decreases as a/b → ∞. However,
asymptotic analysis of the boundary integral equation for b/a � 1, λ̃ = 0 and φ = 0 reveals that
q̃′ and g̃n are both proportional to (b/a)s̃ for s̃ near zero [15]. Our BIM simulations confirm this
result: For both a/b = 10 and a/b = 100, gn/s̃ and q̃′/s̃ are proportional to O(b/a) for s̃ → 0 and
λ̃ = 0 (middle panels of Fig. 7), giving a ratio q̃′(0)/g̃n(0) of 0.45 ad 0.09, respectively. Hence, the
distributed couple term cannot in general be neglected.

In Fig. 8, we plot the maximum deformation ñ0(−1) and stable orientation angle φc versus σ̃−1,
comparing simulations with q̃′ included in Eqs. (11) with simulations in which this term is set to
zero. In line with our previous analysis, we find that the effect of q̃′ is more significant the smaller λ̃,
i.e., for λ̃ � 0.1 and λ̃ � 0.015 for a/b = 10 and 100, respectively. Further, q̃′ becomes negligible
for the larger values of λ̃, even when the deflection of the platelet becomes significantly different
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FIG. 9. (a) Critical slip length λ̃c as a function of the inverse rigidity parameter σ̃−1 for n = 1 and different
aspect ratios. (b) Stable centerline shape for λ̃ = λ̃c, σ̃ = 0.01 and a/b = 50 in the (êx, êy) frame. Insert: Same
data in the particle frame.

to an undeformed platelet, i.e., when ñ0(−1) ∼ O(0.1). For the cases where q̃′ is significant, the
inclusion of q̃′ in the load produces larger deformations.

A stable alignment occurs when λ̃ > λ̃c. For a rigid platelet, λ̃c can be calculated as the value of
λ̃ for which the total torque T̃ (φ = 0) acting on a nonrotating platelet vanishes [12]. The value T̃ (0)
results from a balance between the torque contributions produced by the stress over the platelet’s
edge and slender regions. The contributions to T̃ (0) from the edge regions come mainly from the
normal traction (acting on a level arm ∼1) and is associated to a torque vector directed in the
direction opposite of the vorticity vector of the external flow field [12]. Over the slender region, the
main contribution depends on the tangential traction (acting on a level arm ∼b/a). This contribution
is associated to a torque directed in the direction of the undisturbed vorticity. For no-slip, the torque
contribution from the slender region is larger than the torque contributions from the edge regions,
thus the platelet rotates in the direction of the vorticity vector as predicted by Jeffery [13] and by
Bretherton [14]. The leading order effect of small surface slip is to decrease the torque contribution
from the slender region, while the torque contributions due to the edge regions remain unchanged
to leading order. Thus, there exists a critical slip length for which T̃ (φ = 0) = 0.

For a flat rigid platelet, λ̃ca/b ≈ kn where kn is a prefactor that depends on the specific shape
of the platelet. For our model graphenelike platelet, the specific shape depends on the number n of
layers comprising the platelet [12,33]. Correspondingly, k1 ≈ 0.83 and kn increases slightly as n is
increased. We evaluate numerically how λ̃c changes as a function of σ̃ . For each σ̃ , λ̃c is computed
using a bisection method, by finding the value of λ̃ that separates the two rotational behaviors (either
the angular velocity  → 0 as t increases or no stable solution exists; see Sec. III). Figure 9(a)
shows λ̃c as a function of σ̃−1 for different values of a/b and n = 1. The figure shows that λ̃c slowly
increases as σ̃ decreases, suggesting that a flexible platelet requires a slightly larger slip length to
attain a stable orientation than a rigid platelet. As a/b increases from 10 to 50, λ̃c also increases.
The difference in the value of λ̃c for a/b = 100 are less marked for a/b = 50 than for a/b = 10 in
the given range of σ̃ . For the smaller range of σ̃ , λ̃c for a/b = 100 is larger than for a/b = 50. This
latter result suggests that a platelet with a/b > 100 may require an even larger value of λ̃c to align
indefinitely with time in the limit σ̃ → 0 compared with the aspect ratio range considered here.

In summary, for all the cases considered in Fig. 9(a) the effect of flexibility on λ̃c is rather small.
The reason for this behavior is that when the platelet is nearly aligned with the flow, which is the case
when a stable orientation is achieved, the maximum deformation remains small even for relatively
flexible platelets [as illustrated in Fig. 9(b) for σ̃ = 0.01]. As a consequence, the approximation
λ̃ca/b ≈ kn, developed for flat rigid platelets, holds approximately also in a range of small values
of σ̃ .
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FIG. 10. Internal torque, torque density, and force at s̃ = −L̃ as a function of a/b. All quantities have been
evaluated numerically via the BIM for a rigid undeformed platelet with λ̃a/b = 80 and φ = φc.

B. Effects of the edges

We first analyze effects of the edges by discussing the features of a simplified model, before
considering the full load distribution. In this simplified model, the actual load distribution is replaced
by the low-order polynomial given in Eq. (14). The three polynomial coefficients are obtained by
fitting the boundary values θ ′(−L̃) and θ ′′(−L̃) and the gradient of the hydrodynamic load at s̃ = 0
to the values corresponding to the hydrodynamic load for the rigid undeformed platelet. The fitted
polynomial load and the corresponding exact solution for θ̂ have already been shown in Figs. 3(a)
and 3(b), respectively.

Because only one point, s̃ = 0, is used to fit the polynomial to the load distribution far from the
edges, the load distribution given in Fig. 3(a) does not match exactly the hydrodynamic load of
Fig. 6(a), although the trends and magnitude of the computed load are respected. If the magnitude
of the edge deformation, given by σ̃ θ (−L̃), was dependent primarily on the boundary conditions
at s̃ = −L̃, and not on the load distribution far from the edges, one would expect the magnitude of
deflection from the simplified model to be similar to the computation with the full load. However,
comparing σ̃ θ in Figs. 3(b) and 6(b), one sees that this is not the case: the full numerical solution
gives σ̃ θ (−L̃) ≈ −0.024, whereas the analytical solution of the simplified model predicts θ̂ (−L̃) =
σ̃ θ (−L̃) ≈ −0.25. Therefore the features of the hydrodynamic load distribution far from the edges
must be responsible for the small deformation obtained with the full load distribution.

Unlike the polynomial fit, the hydrodynamic load has a sudden peak as the edge region (s̃ → ±L̃)
is approached [Fig. 6(a)]. This peak is a consequence of the edges of the platelet, and its features
depend on the specific shape of the edges. Our load distribution corresponds to blunt, rounded
edges. Sharp edges would give a singular, although integrable, hydrodynamic stress [56]. For
slender bodies of finite thickness with orientation near φ = 0, a boundary layer region forms in
the neighborhood of s̃ = ±L̃. In this region, the traction from the slender region is matched to the
traction generated in the blunt edge region [15]. The peaks seen in both Figs. 6(c) and 6(d), for
respectively g̃n and q̃, as the edge boundary is approached from the slender region are within this
boundary layer region. Because the polynomial fit does not capture such a boundary layer region,
the stress distribution in such region must contribute to the small deformation of the platelet.

We have seen that the sudden peak in the hydrodynamic load distribution due to the edges
affects the degree of deformation of the platelet. But the actual edge forces and moments
[T̃E (±L̃), F̃E ,n(±L̃), and q̃(±L̃)] may still also contribute to the actual degree of deformation of
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FIG. 11. Maximum deflection ñ0(−1) and stable orientation angle φc versus the inverse rigidity parameter
σ̃−1, comparing full boundary conditions (continuous line) with free-end boundary conditions (dashed line).

the platelet. In Fig. 10 we show how T̃E (±L̃), F̃E ,n(±L̃), and q̃(±L̃) depend on a/b for a flat, rigid
platelet, oriented at its stable position. As expected all quantities tend to zero as a/b → ∞.

Because the edge moments and forces vanish as a/b → ∞, one could assume that the free-end
boundary conditions,

σ̃ θ ′(±L̃) = 0, σ̃ θ ′′(±L̃) = 0, (16)

are accurate for very slender bodies. This approximation is nearly always used in the modeling of
freely suspended filaments [19,43,54,57–60], sheets and ribbons [20]. To test the effect of the small
but finite value of the edge load, in Fig. 11 we compare how ñ0(−1) changes as a function of σ̃−1

for the two different boundary conditions Eqs. (10) and (16). For a/b = 10 and a/b = 100, we find
a difference in ñ0(−1) of about 20% and 35% respectively depending on which boundary condition
is used. For a/b = 10 and a/b = 100, the free-end boundary conditions predicts a smaller value of
ñ0(−1) than the the full boundary conditions and the difference between the values of ñ0(−1) in the
two cases increases as σ̃ decreases. Therefore, including effects of the blunt edges is necessary to
achieve accurate predictions of the deformation of the platelet, at least for platelets with geometric
aspect ratio up to the largest value considered here in our simulations. For even smaller σ̃ than that
examined here, such an error in the shape of the platelet could become more marked as the degree
of deflection increases.

FIG. 12. (a) Centerline shapes for different aspect ratios and σ̃ = 0.1. Insert: Stable solution of the
centerline in the (ês0 , ên0 ) frame. The values of the slip length corresponding to the different aspect ratios
are λ̃ = 8, λ̃ = 1.6, and λ̃ = 0.8. [(b) and (c)] Maximum deflection ñ0(−1) and stable orientation angle φc for
the same aspect ratios as in (a). [(d) and (e)] Force and moments at s̃ = −L̃ for the same aspect ratios as in (a).
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FIG. 13. Same as Fig. 12 but for varying number of stacks n. Other parameters are λ̃ = 8, a/b = 10, and
σ̃−1 = 0.1.

To test which boundary condition affects the most the deformation of the platelet, we return to
the analysis of the terms plotted in Fig. 10. In this figure, F̃E ,n(±L̃) has a slower decay with a/b
than T̃E (±L̃) or q̃(±L̃), suggesting that this term is the most dominant. The exponent of F̃E ,n(±L̃)
is comparable to that found numerically for a rectangular no-slip platelet with sharp edges in a
shear flow for φ = 0 [61] and is in line with the reported exponents produced by the singular stress
produced near an exterior corner [62].

A comparison of the shape of platelets for different values of a/b is shown in Fig. 12(a).
Figures 12(b)–12(d) shows ñ0(−L̃), φc and the derivatives of the solution at s̃ = −s̃ as a function
of σ̃−1. As seen in Figs. 12(a) and 12(b), the degree of deformation decreases as a/b increases. The
value of θ ′′(±L̃) is always much greater than θ ′(±L̃) for all values of a/b, due to F̃E ,n(±L̃) being
much larger than T̃E (±L̃). Thus, this boundary condition, as well as the peak in the load distribution
at s̃ = −L̃, affects the overall deformation of the platelet more than T̃E (±L̃).

As b increases for fixed a, the flat face of the edge becomes flatter. Fixing a/b, as the number of
stacks n (and thus b) increases, g̃n also increases in the edge region, and the length of the centerline
in the edge region |ξ̃ | decreases. The force from the edge F̃E ,n(±L̃) and the force in the boundary
layer region as s̃ → −L̃ will hence also change. Figure 13 compares the deformation of platelets for
different values of n. As n increases ñ0(−1) also increases, demonstrating the effect of the specific
edge shape on the overall deformation of the platelet.

V. DISCUSSION AND CONCLUSIONS

We have analysed a two-dimensional model for the deformation of a flexible platelike particle
suspended in a shear flow, with a Navier-slip boundary condition applied on the particle surface.
Our model is based on coupling iteratively a boundary integral equation for the fluid and an Euler-
Bernoulli beam equation for the solid. The use of a boundary integral formulation that accounts
for high grid refinement near the edges allows for an accurate computation of the hydrodynamic
traction acting on the surface of the platelet. Such accuracy is crucial to capture the alignment and
deformation of the platelet. While we have considered a specific shape of the edge relevant to 2D
nanomaterials, our model should apply more generally to platelike particles and molecules.

We use our model to investigate the occurrence of stable alignments for deformable particles as
a function of the nondimensional bending rigidity σ̃ and aspect ratio a/b. Our numerical procedure
allows us to find stable solutions for values of σ̃ above a threshold rigidity parameter σ̃c; this
threshold parameter is related to the specific surface of the platelet (i.e., the geometric aspect
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ratio, the shape of its edges, and the value of the slip length λ). As for rigid flat platelets, stable
solutions are found if λ is approximately larger than the half-thickness of the platelet. We find that
the minimum value of slip length λc that is required for the platelet to stabilize is larger for finite
values of σ̃ as compared to the rigid platelet case (σ̃ → ∞). The increase in λc with decreasing
σ̃ is relatively small and depends on a/b. For example, for a/b = 100 and σ̃ = 0.01, λc increases
by about 10% compared to the case σ̃ → ∞. The reason to this small increase in λc is as follows.
For sufficiently large slip (λ > λc), the platelet is always nearly aligned with the flow. For this
orientation, the compressive hydrodynamic stresses, which could lead to large-amplitude buckling,
are negligible. The increase in λc is thus mostly due to a small deformation produced for φ � 1 by
normal forces on the slender portion of the particle and localized edge effects.

A consequence of the small deflection and mild effect on λc, is that the theory of rigid slip
platelets [12,33] could be used to predict the dynamics of flexible slip platelets in flow for relativity
small values of σ̃ . This is in agreement with data obtained with flexible disk-shaped aromatic
molecules in shear flow using molecular dynamics simulations [32]. For these molecules, which are
characterised by relatively large slip lengths, the orientational statistics were found to approximately
agree with a model developed for rigid platelets.

Our model accounts for two effects that are often discarded in the modeling of elongated and
flexible particles. The first effect is the inclusion of the hydrodynamic torque density, i.e., the
distributed couple due to the shearing of the surfaces of the platelet by tangential hydrodynamic
forces. We found that if λ � a the torque density results in an increased deflection of the platelet
compared to simulations which exclude such effect.

For larger values of λ, the effect of the torque density becomes subdominant compared to the
effect of the normal hydrodynamic load. For most platelike platelets which are not nanometric
in length, λ is generally small. For example, for graphene, λ ≈ 10 nm and a typically 0.5–2 μm
[33]. Therefore the torque density is expected to be important in this case. The second effect is the
hydrodynamic stress acting on the edges. When the platelet is nearly oriented in the flow direction,
the presence of the edges is associated with a large peak in the normal hydrodynamic traction
distribution. We find that the magnitude of deformation depends strongly on these peaks. Therefore,
the specific structure of the edges, which affects the size of the peaks, is important even for a/b as
high as 100.

An elongated particle with λ < λc follows some rotational orbits in a shear flow, but still spends
most of its rotational period almost aligned with the flow [13]. When the particle is aligned with the
flow, some of our conclusions obtained in the case λ > λc are expected to apply. In particular, edges
are expected to be important and to have an effect on the shape of the particle. In the case of rigid
elongated particles, edges are already known to have an effect on the frequency of the rotational
orbits with particles with flat edges rotating faster than particles with rounded edges [15].

More broadly, our results suggest that to simulate the dynamics of particles with slip, the effect
of the edges and torque density must be resolved explicitly, or at least modelled (e.g., by using local
“sub-grid-scale” models, or a slender body theory approximation which accounts for the edges [63]).
Fortunately, for platelike particles nearly aligned with the flow, the hydrodynamic load distribution
in the case of a deformable particle is similar to that of a rigid particle. Therefore, models which
calculate the deformation from a reference configuration in which the particle is not deformed could
be used to develop efficient methods for deformable particles. Furthermore, our results confirm our
previous observation that surface slip can arrest the rotation of platelike particles suspended in a
shear flow [12], extending the theory to particles that are flexible.
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APPENDIX: DERIVATION OF THE FORCE AND TORQUE BALANCE EQUATIONS

The relationship between the generalized external hydrodynamic load, made of the tangential and
normal loads plus the distributed couple, and the generalized internal force produced by the bending
of the centerline can be found by solving the configuration for which δW − δEint = 0 [64,65]. Here
δW represents the work done by the fluid over an infinitesimal displacement δ of x0, and δEint is the
first variation of the internal energy Eint; for our system, the nondimensional work δW̃ = δW/(γ̇ ηa3)
is

δW̃ =
∫ L̃

−L̃
[g̃(s̃) · δx̃0(s̃) + q̃(s̃)δθ ]ds̃ + T̃E (s̃)δθ (s̃)|s̃=L̃

s̃=−L̃ + F̃E (s̃) · δx̃0(s̃)|s̃=L̃
s̃=−L̃, (A1)

where all length, time, and stress scales have been nondimensionlized by a, 1/γ̇ , and γ̇ η, re-
spectively, and tilde is used to represent all nondimensionlized quantities. The nondimensional
internal energy of a thin inextensible platelet Ẽint = Eint(θ ′)/(γ̇ ηa3) is given by (see, for example,
Refs. [65–68])

Ẽint(θ
′) =

∫ L̃

−L̃

σ̃

2
θ ′2 + l̃ (s̃)

2
(x̃′ · x̃′ − 1)ds̃, (A2)

where σ̃ = σB/γ̇ ηa3 is the nondimensional bending rigidity parameter and l̃ (s̃) is a Lagrangian
multiplier, and where the prime denotes the derivative with respect to s̃. The first term on the right
of the equal sign in Eq. (A2) is the energy due to bending. The second term on the right of the equal
sign in Eq. (A2) is the energy due to tension, where l̃ physically represents the (dimensionless) axial
tension [69].

We solve δẼint − δW̃ for small curvature (θ � 1, s̃0 ≈ s̃, θ ≈ −h̃′, and κ̃ ≈ −h̃′′). Taking the first
variation of δẼint, integrating by parts where needed, and using the condition of zero total torque and
force leads to

δẼint − δW̃ =
∫ L̃

−L̃
[(σ̃ h̃′′′′ + l h̃′′ − g̃n − q̃′)δh̃(s̃)]ds̃ + [−F̃E ,n(s̃) + q̃(s̃) − σ̃ h̃′′′(s̃)]δh̃(s̃)|s̃=L̃

s̃=L̃

+ [T̃E (s̃) + σ̃ h̃′′(s̃)]δh̃′(s̃)|s̃=L̃
s̃=L̃ +

∫ L̃

−L̃
[(−l̃ ′ − g̃s)δs̃]ds + (l̃ (s̃) − F̃E ,s(s̃))δs̃|s̃=L̃

s̃=L̃.

(A3)

Setting δẼint − δW̃ = 0 gives

σ̃ h̃′′′′ + l̃ h̃′′ − g̃n − q̃′ = 0, l̃ ′ + g̃s = 0, (A4)

with the boundary conditions σ̃ h̃′′(±L̃) = −T̃E (±L̃), σ̃ h̃′′′(±L̃) = −F̃E ,n(±L̃) + q̃(±L̃) and
l̃ (±L̃) = F̃E ,s(±L̃). An additional boundary condition h̃′(x̃c) = 0 [from θ (0) = 0] is needed to
satisfy the condition of zero net torque.

For large curvature, the derivation is similar to the case θ � 1 presented in Eqs. (A3) and
(A4) and is not repeated here (a similar derivation for large curvature is given in Ref. [64]). The
equilibrium equations for large curvature are

σ̃ θ ′′′ + l̃θ ′ + g̃n + q̃′ = 0, l̃ ′ + g̃s = 0, (A5)

with the boundary conditions

σ̃ θ ′(±L̃) = T̃E (±L̃),

σ̃ θ ′′(±L̃)+ = −q̃(±L̃) + F̃E ,n(±L̃),

θ (x̃c) = 0,

l̃ (±L̃) = F̃E ,s(±L̃). (A6)
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In our case the central line is antisymmetric about s̃ = 0, hence T̃E (−L̃) = −T̃E (L̃), q̃(−L̃) =
q̃(L̃) and F̃E ,n(−L̃) = F̃E ,n(L̃). The boundary conditions [Eqs. (A6)] therefore simplify to

σ̃ θ ′(−L̃) = T̃E (−L̃),

σ̃ θ ′′(−L̃) = −q̃(−L̃) + F̃E ,n(−L̃),

θ (s̃) = θ (−s̃), (A7)

θ (0) = 0,

l̃ (−L̃) = F̃E ,s(−L̃).

[1] Y. C. F. Soares, E. Cargnin, M. F. Naccache, and R. J. E. Andrade, Influence of oxidation degree of
graphene oxide on the shear rheology of poly(ethylene glycol) suspensions, Fluids 5, 41 (2021).

[2] S. Hamze, D. Cabaleiro, and P. Estellé, Graphene-based nanofluids: A comprehensive review about
rheological behavior and dynamic viscosity, J. Mol. Liq. 325, 115207 (2021).

[3] G. Zyła, A. Witek, and M. Gizowska, Rheological profile of boron nitride-ethylene glycol nanofluids, J.
Appl. Phys. 117, 014302 (2015).

[4] M. S. Alqarni, R. Tabassum, M. Y. Malik, and R. Mehmood, Shape effects of molybdenum disulfide (nm)
micro-rotating particles in crosswise transport of hydrogen oxide: (MoS2-H2O) nano polymer gel, Phys.
Scr. 95, 035002 (2020).

[5] P. Lingard and R. Whitmore, The deformation of disc-shaped particles by a shearing fluid with application
to the red blood cell, J. Colloid Interf. Sci. 49, 119 (1974).

[6] R. Nicklow, N. Wakabayashi, and H. G. Smith, Lattice dynamics of pyrolytic graphite, Phys. Rev. B 5,
4951 (1972).

[7] P. Liu and Y. W. Zhang, Temperature-dependent bending rigidity of graphene, App. Phys. Lett. 94, 231912
(2009).

[8] R. Lipowsky, The conformation of membranes, Nature (Lond.) 349, 475 (1991).
[9] R. Dimova, Recent developments in the field of bending rigidity measurements on membranes, Adv.

Colloid Interfac. 208, 225 (2014).
[10] P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S. H. Aboutalebi, G. Wallace, and C. Zakri,

Superflexibility of graphene oxide, Proc. Natl. Acad. Sci. USA 113, 11088 (2016).
[11] G. Tocci, L. Joly, and A. Michaelides, Friction of water on graphene and hexagonal boron nitride from

ab initio methods: Very different slippage despite very similar interface structures, Nano Lett. 14, 6872
(2014).

[12] C. Kamal, S. Gravelle, and L. Botto, Hydrodynamic slip can align thin nanoplatelets in shear flow, Nat.
Commun. 11, 2425 (2020).

[13] G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A 102,
161 (1922).

[14] F. P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech. 14,
284 (1962).

[15] V. Singh, D. L. Koch, G. Subramanian, and A. D. Stroock, Rotational motion of a thin axisymmetric disk
in a low Reynolds number linear flow, Phys. Fluids 26, 033303 (2014).

[16] Q. Meng and J. J. Higdon, Large scale dynamic simulation of plate-like particle suspensions. Part I:
Non-Brownian simulation, J. Rheol. 52, 1 (2008).

[17] K. S. Silmore, M. Strano, and J. W. Swan, Buckling, crumpling, and tumbling of semiflexible sheets in
simple shear flow, Soft Matter 17, 4707 (2021).

[18] Y. Yu and M. D. Graham, Coil-stretch-like transition of elastic sheets in extensional flows, Soft Matter
17, 543 (2021).

[19] O. Du Roure, A. Lindner, E. N. Nazockdast, and M. J. Shelley, Dynamics of flexible fibers in viscous
flows and fluids, Annu. Rev. Fluid Mech. 51, 539 (2019).

084102-19

https://doi.org/10.3390/fluids5020041
https://doi.org/10.1016/j.molliq.2020.115207
https://doi.org/10.1063/1.4903737
https://doi.org/10.1088/1402-4896/ab4cac
https://doi.org/10.1016/0021-9797(74)90306-3
https://doi.org/10.1103/PhysRevB.5.4951
https://doi.org/10.1063/1.3155197
https://doi.org/10.1038/349475a0
https://doi.org/10.1016/j.cis.2014.03.003
https://doi.org/10.1073/pnas.1605121113
https://doi.org/10.1021/nl502837d
https://doi.org/10.1038/s41467-020-15939-w
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1017/S002211206200124X
https://doi.org/10.1063/1.4868520
https://doi.org/10.1122/1.2798236
https://doi.org/10.1039/D0SM02184A
https://doi.org/10.1039/D0SM01630F
https://doi.org/10.1146/annurev-fluid-122316-045153


KAMAL, GRAVELLE, AND BOTTO

[20] T. D. Montenegro-Johnson, L. Koens, and E. Lauga, Microscale flow dynamics of ribbons and sheets,
Soft Matter 13, 546 (2017).

[21] G. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech.
44, 419 (1970).

[22] L. Koens and E. Lauga, Slender-ribbon theory, Phys. Fluids 28, 013101 (2016).
[23] R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput. 23, 1204 (2001).
[24] Y. Xu and M. J. Green, Brownian dynamics simulations of nanosheet solutions under shear, J. Chem.

Phys. 141, 024905 (2014).
[25] Y. Xu and M. J. Green, Brownian dynamics simulation of two-dimensional nanosheets under biaxial

extensional flow, J. Polym. Sci., Part B: Polym. Phys. 53, 1247 (2015).
[26] C. Pozrikidis, Shear flow over cylindrical rods attached to a substrate, J. Fluids Struct. 26, 393 (2010).
[27] C. Pozrikidis, Shear flow past slender elastic rods attached to a plane, Int. J. Solids Struct. 48, 137 (2011).
[28] J. Cappello, M. Bechert, C. Duprat, O. du Roure, F. Gallaire, and A. Lindner, Transport of flexible fibers

in confined microchannels, Phys. Rev. Fluids 4, 034202 (2019).
[29] S. Jogun and C. Zukoski, Rheology and microstructure of dense suspensions of plate-shaped colloidal

particles, J. Rheo. 43, 847 (1999).
[30] P. Payamyar, B. T. King, H. C. Öttinger, and A. D. Schlüter, Two-dimensional polymers: Concepts and

perspectives, Chem. Commun. 52, 18 (2016).
[31] J. M. Hughes, Y. Hernandez, D. Aherne, L. Doessel, K. Müllen, B. Moreton, T. W. White, C. Partridge,

G. Costantini, A. Shmeliov et al., High quality dispersions of hexabenzocoronene in organic solvents, J.
Am. Chem. Soc. 134, 12168 (2012).

[32] S. Gravelle, C. Kamal, and L. Botto, Violations of Jeffery’s theory in the dynamics of nanographene in
shear flow, Phys. Rev. Fluids 6, 034303 (2021).

[33] C. Kamal, S. Gravelle, and L. Botto, Effect of hydrodynamic slip on the rotational dynamics of a thin
Brownian platelet in shear flow, J. Fluid Mech. 919, A1 (2021).

[34] S. Gravelle, L. Joly, C. Ybert, and L. Bocquet, Large permeabilities of hourglass nanopores: From
hydrodynamics to single file transport, J. Chem. Phys. 141, 18C526 (2014).

[35] D. Chung, Review graphite, J. Mater. Sci. 37, 1475 (2002).
[36] L. D. Landau, E. M. Lifsic, L. Pitaevskii, and A. Kosevich, Course of Theoretical Physics: Theory of

Elasticity (Pergamon Press, London, 1986).
[37] M. Poot and H. S. van der Zant, Nanomechanical properties of few-layer graphene membranes, Appl.

Phys. Lett. 92, 063111 (2008).
[38] N. Lindahl, D. Midtvedt, J. Svensson, O. A. Nerushev, N. Lindvall, A. Isacsson, and E. E. Campbell,

Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes, Nano
Lett. 12, 3526 (2012).

[39] H. Luo and C. Pozrikidis, Interception of two spheres with slip surfaces in linear Stokes flow, J. Fluid
Mech. 581, 129 (2007).

[40] H. Luo and C. Pozrikidis, Effect of surface slip on Stokes flow past a spherical particle in infinite fluid
and near a plane wall, J. Eng. Math. 62, 1 (2008).

[41] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge
University Press, Cambridge, UK, 1992).

[42] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications (Courier Corporation,
London, 2013).

[43] A.-K. Tornberg and M. J. Shelley, Simulating the dynamics and interactions of flexible fibers in Stokes
flows, J. Comput. Phys. 196, 8 (2004).

[44] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P.
King et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation
in liquids, Nat. Mater. 13, 624 (2014).

[45] Y. Y. Huang and E. M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and
composite properties, Polymers 4, 275 (2012).

[46] L. Landau, E. Lifshitz, A. Kosevich, and L. Pitaevskiæi, Theory of Elasticity, Vol. vii (Butterworth, London,
1995).

084102-20

https://doi.org/10.1039/C6SM02105K
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1063/1.4938566
https://doi.org/10.1137/S106482750038146X
https://doi.org/10.1063/1.4884821
https://doi.org/10.1002/polb.23760
https://doi.org/10.1016/j.jfluidstructs.2010.01.008
https://doi.org/10.1016/j.ijsolstr.2010.09.012
https://doi.org/10.1103/PhysRevFluids.4.034202
https://doi.org/10.1122/1.551013
https://doi.org/10.1039/C5CC07381B
https://doi.org/10.1021/ja303683v
https://doi.org/10.1103/PhysRevFluids.6.034303
https://doi.org/10.1017/jfm.2021.327
https://doi.org/10.1063/1.4897253
https://doi.org/10.1023/A:1014915307738
https://doi.org/10.1063/1.2857472
https://doi.org/10.1021/nl301080v
https://doi.org/10.1017/S0022112007005551
https://doi.org/10.1007/s10665-007-9170-6
https://doi.org/10.1016/j.jcp.2003.10.017
https://doi.org/10.1038/nmat3944
https://doi.org/10.3390/polym4010275


ALIGNMENT OF A FLEXIBLE PLATELIKE PARTICLE …

[47] N. K. Reddy, G. Natale, R. K. Prud’homme, and J. Vermant, Rheo-optical analysis of functionalized
graphene suspensions, Langmuir 34, 7844 (2018).

[48] J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation (Cambridge Univer-
sity Press, Cambridge, UK, 2015).

[49] C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC
Press, Boca Raton, FL, 2002).

[50] A. T. Chwang and T. Y.-T. Wu, Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method
for Stokes flows, J. Fluid Mech. 67, 787 (1975).

[51] J. Sherwood and G. Meeten, The use of the vane to measure the shear modulus of linear elastic solids, J.
Non-Newtonian Fluid Mech 41, 101 (1991).

[52] W. H. Press, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press,
Cambridge, UK, 2007).

[53] G. Natale, N. K. Reddy, R. K. Prud’homme, and J. Vermant, Orientation dynamics of dilute functionalized
graphene suspensions in oscillatory flow, Phys. Rev. Fluids. 3, 063303 (2018).

[54] L. E. Becker and M. J. Shelley, Instability of Elastic Filaments in Shear Flow Yields First-Normal-Stress
Differences, Phys. Rev. Lett. 87, 198301 (2001).

[55] S. Gravelle, C. Kamal, and L. Botto, Liquid exfoliation of multilayer graphene in sheared solvents: A
molecular dynamics investigation, J. Chem. Phys. 152, 104701 (2020).

[56] D. Michael and M. O’Neill, The separation of Stokes flows, J. Fluid Mech. 80, 785 (1977).
[57] J. M. Stockie and S. I. Green, Simulating the motion of flexible pulp fibres using the immersed boundary

method, J. Comput. Phys. 147, 147 (1998).
[58] S. D. Olson, S. Lim, and R. Cortez, Modeling the dynamics of an elastic rod with intrinsic curvature and

twist using a regularized Stokes formulation, J. Comput. Phys. 238, 169 (2013).
[59] J. K. Wiens and J. M. Stockie, Simulating flexible fiber suspensions using a scalable immersed boundary

algorithm, Comput. Method Appl. M. 290, 1 (2015).
[60] E. Nazockdast, A. Rahimian, D. Zorin, and M. Shelley, A fast platform for simulating semi-flexible fiber

suspensions applied to cell mechanics, J. Comput. Phys. 329, 173 (2017).
[61] G. Salussolia, E. Barbieri, N. M. Pugno, and L. Botto, Micromechanics of liquid-phase exfoliation of a

layered 2D material: A hydrodynamic peeling model, J. Mech. Phys. Solids 134, 103764 (2020).
[62] I. Mustakis and S. Kim, Microhydrodynamics of sharp corners and edges: Traction singularities, AIChE

44, 1469 (1998).
[63] R. E. Johnson, An improved slender-body theory for Stokes flow, J. Fluid Mech. 99, 411 (1980).
[64] B. Audoly and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells

(Oxford University Press, Oxford, 2010).
[65] S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, A boundary integral method for simulating the

dynamics of inextensible vesicles suspended in a viscous fluid in 2D, J. Comput. Phys. 228, 2334 (2009).
[66] J. Teran, L. Fauci, and M. Shelley, Viscoelastic Fluid Response Can Increase the Speed and Efficiency of

a Free Swimmer, Phys. Rev. Lett. 104, 038101 (2010).
[67] Ou-Yang Zhong-can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the

first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev.
A 39, 5280 (1989).

[68] M. Abbasi, A. Farutin, H. Ez-Zahraouy, A. Benyoussef, and C. Misbah, Erythrocyte-erythrocyte aggre-
gation dynamics under shear flow, Phys. Rev. Fluids 6, 023602 (2021).

[69] E. Hinch, The distortion of a flexible inextensible thread in a shearing flow, J. Fluid Mech. 74, 317 (1976).

084102-21

https://doi.org/10.1021/acs.langmuir.8b01574
https://doi.org/10.1017/S0022112075000614
https://doi.org/10.1016/0377-0257(91)87037-X
https://doi.org/10.1103/PhysRevFluids.3.063303
https://doi.org/10.1103/PhysRevLett.87.198301
https://doi.org/10.1063/1.5141515
https://doi.org/10.1017/S0022112077002481
https://doi.org/10.1006/jcph.1998.6086
https://doi.org/10.1016/j.jcp.2012.12.026
https://doi.org/10.1016/j.cma.2015.02.026
https://doi.org/10.1016/j.jcp.2016.10.026
https://doi.org/10.1016/j.jmps.2019.103764
https://doi.org/10.1002/aic.690440702
https://doi.org/10.1017/S0022112080000687
https://doi.org/10.1016/j.jcp.2008.11.036
https://doi.org/10.1103/PhysRevLett.104.038101
https://doi.org/10.1103/PhysRevA.39.5280
https://doi.org/10.1103/PhysRevFluids.6.023602
https://doi.org/10.1017/S002211207600181X

