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Importance sampling for Markovian
tandem queues using subsolutions:
exploring the possibilities

Anne Buijsrogge1 , Pieter-Tjerk de Boer2 and
Werner RW Scheinhardt2

Abstract
We consider importance sampling simulation for estimating the probability of reaching large total number of customers
in an M jM j1 tandem queue, during a busy cycle of the system. Our main result is a procedure for obtaining a family of
asymptotically efficient changes of measure based on subsolutions. We explicitly show these families for two-node tan-
dem queues and we find that there exist more asymptotically efficient changes of measure based on subsolutions than
currently available in literature.
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1. Introduction

In this paper, we explore possibilities for importance sam-

pling in a Markovian tandem queue. With importance sam-

pling, the underlying probability distributions are changed

to speed up a simulation. This change of the probability

distributions is also called a change of measure. When

exploring the possibilities for a change of measure, we

focus on the probability of total buffer overflow during a

busy cycle of an M jM j1 tandem queue.

This problem was first studied by Parekh and

Walrand,1 where a state-independent change of measure

is suggested based on heuristics. In that paper, the

authors note that their change of measure performs

poorly in practice in some cases. Afterwards, in

Glasserman and Kou,2 necessary and sufficient condi-

tions have been determined for d-node M jM j1 tandem

queues in order for the same change of measure to be

asymptotically efficient (which means that the relative

error of the estimator grows less than exponentially fast).

These conditions have been extended in the work of de

Boer3 for the case d = 2 and, in that paper, it also has

been shown that the change of measure from Parekh and

Walrand1 is the only state-independent change of mea-

sure that may be asymptotically efficient when d = 2.

The conclusion of these two papers is that the state-

independent change of measure from Parekh and

Walrand1 for the d-node M jM j1 tandem queue is not

asymptotically efficient for all input parameters.

To resolve this issue, in the work of Dupuis et al.,4 a

state-dependent change of measure has been developed

for the two-node M jM j1 tandem queue such that this

change of measure is asymptotically efficient for all input

parameters. This change of measure is derived using so-

called subsolutions, which have been introduced (in the

context of importance sampling) by Dupuis and Wang.5

Afterward, the work from Dupuis et al.4 has been extended

to Jackson networks in the work of Dupuis and Wang,6

and to non-Markovian tandem queues in the work of

Buijsrogge et al.7 For more details on subsolutions, see

also Budhiraja and Dupuis’s,8 Chapters 14 and 15.

Another approach has been developed by Blanchet,9

where an algorithm is presented that gives bounded rela-

tive error. This approach uses the time reversed process of

Jackson networks. While the time reversed process is

known for Jackson networks, this is not the case in other

contexts, e.g., for non-Markovian tandem queues. Thus,

even though a more efficient simulation approach might

exist for the model in the current paper, the approach that

we use here is generalizable to processes where the time
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reversed process is unknown, see, for example, Buijsrogge

et al.7 Therefore, we believe that the insights obtained in

this paper can be useful for those types of processes.

In addition, in the work of Sezer,10 an approximation

method has been developed for the two-node M jM j1 tan-

dem queue using subsolutions. While the approximation

of this probability could be very interesting in some cases,

an unbiased simulation might be preferred in other cases

or could be used to verify the results. Thus, in this paper,

we focus on simulation.

Even though the problem that we consider has been

studied previously in1–4,6,9,11 and asymptotic efficiency of

changes of measure based on subsolutions has been shown

in some of these works4,6,11 still there are ‘‘only’’ three

such changes of measure known that have been proven to

be asymptotically efficient for the two-node M jM j1 tan-

dem queue: two when queue 2 is the bottleneck queue (i.e.

m2 4m1, where mi is the service rate of queue i), and one

when queue 1 is the bottleneck queue (m1 4m2), see

Dupuis et al.4 and Dupuis and Wang.6 However, in the

work of Buijsrogge et al.,7 we have shown that there are

several possible changes of measure based on subsolutions

yielding an asymptotically efficient estimator for GI jGI j1
tandem queues with bounded support. Since the exponen-

tial distribution clearly does not have bounded support,

this raises some thoughts on whether there exist more

asymptotically efficient changes of measure based on sub-

solutions for the two-node M jM j1 tandem queue.

In this paper, we give sufficient conditions for an

asymptotically efficient change of measure based on sub-

solutions for the M jM j1 tandem queue. These conditions

follow naturally when using the same method as in the

works of Dupuis et al.4 and Dupuis and Wang,6 but have

never been stated as such. We show how to find changes

of measure satisfying these conditions and we believe the

same could be done for other models. There is no numeri-

cal section as we do not aim for more efficient simulation

schemes for the particular tandem model at hand (for

which we could simply follow Blanchet9), but we aim for

providing a procedure to obtain possible schemes based on

subsolutions that surely lead to an asymptotically efficient

estimator. For more complex models, we do have numeri-

cal results, see Buijsrogge et al.7 and Buijsrogge.12

Moreover, in this paper, we consider both m1 4m2 and

m2 4m1. Even though this does not affect the probability

of interest, since both queues are interchangeable,13 it is

particularly interesting to see the possibilities for a change

of measure when m1 4m2. This is in line with Buijsrogge

et al.,7 where we have considered both queue 1 and queue 2

being the bottleneck queue (for a two-node M jM j1 tandem

queue this is equivalent to m1 4m2 and m2 4m1, respec-

tively). This is in slight contrast with most existing

literature on importance sampling for two-node Markovian

tandem queues, see for example,2,3,4,11 where only the sec-

ond queue being the bottleneck queue has been discussed

(i.e., m2 4m1).

The contributions of this paper are two-fold. After sum-

marizing the subsolution method for importance sampling

and stating the results from Dupuis et al.4 and Dupuis and

Wang6 in Section 2, our first contribution is in Section 3,

where we state conditions for a change of measure for the

d-node M jM j1 tandem queue based on subsolutions to

give an asymptotically efficient estimator, and we prove

that these conditions are sufficient for d = 2. The other

contribution, in Section 4, is that we provide a whole fam-

ily of changes of measure for the two-node M jM j1 tandem

queue that satisfy these conditions and hence result in an

asymptotically efficient estimator. We conclude this paper

in Section 5.

2. Model and preliminaries
2.1. The model

In this paper, we consider a d-node M jM j1 tandem queue,

with arrival rate l and service rates m1,..., md for queues

1, . . . , d, respectively, and we are interested in estimating

the probability that the total number of customers in the

system reaches some high level N during a busy cycle of

the system. Since the case d = 2 has been studied mostly

in literature, we mainly consider this case. However, it

seems likely that all of the results can also be extended to

d . 2 and so we will briefly comment on these exten-

sions when necessary. Thus, we now let d = 2.

We consider the underlying embedded discrete time

Markov chain and we assume without loss of generality

l+m1 +m2 = 1. Furthermore, we assume that

l \ minfm1,m2g, so that the system is stable. As in previ-

ous works,4,6,11 we let the state description be the number

of customers in each queue, denoted by Zi =(Z1, i, Z2, i),
where Zj, i is the number of customers in queue j after i

transitions.

We let vk denote the possible transitions and Y(vk) their
corresponding probabilities, i.e., v0 =(1, 0) corresponds to
an arrival to the first queue, and has probability Y(v0)= l.

Similarly, we have v1 =(� 1, 1) and v2 =(0, � 1),
Y(v1)=m1 and Y(v2)=m2. The transitions v1 and v2 can

only occur when Z1, i . 0 and Z2, i . 0, respectively. If

Zj, i = 0 for some queue j, thus, there are no customers in

queue j, we add a self-loop transition with probability mj to

make sure that the sum of all rates equals 1 (so that all

rates are probabilities).

As in the work of Dupuis et al.,4 we let Xi =( 1
N
)Zi be

the scaled state description, which has the advantage that

its elements are in [0,1] and therefore do not increase as N

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



increases. This allows us to make the following

definitions:

D= f(x1, x2) : xj . 0, x1 + x2 \ 1g,
d1 = f(0, x2) : 0\ x2 \ 1g,
d2 = f(x1, 0) : 0\ x1 \ 1g,
de = f(x1, x2) : xj ø 0, x1 + x2 = 1g,
d0 = f(0, 0)g,

and this is sketched in Figure 1.

Using these definitions, we can define the first time that

the process hits level N in a busy cycle as

tN = inffi . 0 : Xi 2 de,Xk 62 d0 8k = 1, . . . , i� 1g

and we set tN =‘ if the process hits d0 before de.

Therefore, our probability of interest can be written as

pN =P tN \ ‘ j X0 =
�
1
N
, 0
�� �

It is known that the asymptotic decay rate of this prob-

ability is given by

g ¼: � lim
N!‘

1

N
log pN =� log

l

minfm1,m2g

� �
= minfg1, g2g, ð1Þ

where gj =� log (l=mj), see Glasserman and Kou2 and

Buijsrogge et al.14 The queue for which we have gj = g is

called the bottleneck queue. For the M jM j1 tandem queue,

the bottleneck queue is equivalent to the queue with the

largest server utilization. In most papers on similar topics,

see, for example, Glasserman and Kou,2 de Boer,3 Dupuis

et al.4 and de Boer and Scheinhardt,11 it is assumed that

m2 4m1, as for the probability of interest the queues are

interchangeable.13 In this paper, we both consider m2 4m1

and m1 4m2.

2.2. Importance sampling simulation

To estimate our probability of interest using simulation,

we use importance sampling. In importance sampling, we

perform our simulation under some new measure Q. Under

this new measure, we let �Y(vk jx) denote the probability

for transition vk given that we are in state x. While doing

the simulation, we keep track of the likelihood ratio L(P)
of a path P=(Xi, i= 0, . . . , tN ):

L(P)=
YtN�1

i= 0

Y(Yi)
�Y(YijXi)

, ð2Þ

where Yi =(Xi+ 1 � Xi)N if Xi+ 1 6¼ Xi and Yi = vk if

Xi+ 1 =Xi and Xi 2 dk , k = 1, 2, to include the self-loop

transition when one of the queues is empty. Let

I(P)= 1ftN \ ‘g indicate whether we have reached our

event of interest during a busy cycle of the system or not.

Then, under the new measure Q, we have

pN =EQ L(P)I(P)½ �,

where EQ denotes the expectation under the new measure Q.

Thus, L(P)I(P) is the estimator for our probability of interest.
As in the work of Dupuis et al.,4 we construct a subsolu-

tion W (x) – formally defined in Section 2.3 – and we use

this function to specify a change of measure in the follow-

ing way:

�Y(vk j x)=Y(vk)e
�hDW (x), vkieH(x,DW (x)), ð3Þ

where DW (x) denotes the gradient of W (x) with respect

to x, and where:

H(x,DW (x))=� log
X2
k = 0

Y(vk)e
�hDW (x), vki

 !
_ ð4Þ

If we compare Equation (4) with the corresponding

notation in the works of Dupuis et al.4 and de Boer and

Scheinhardt,11 a factor 2 is missing. However, we will also

scale the function W (x) accordingly, so that the change of

measure remains the same.

As we are interested in finding a change of measure that

gives an asymptotically efficient estimator for pN , we need

lim sup
N!‘

1

N
logEQ L(P)2I(P)

� �
4� 2g,

or equivalently:

lim sup
N!‘

1

N
logE L(P)I(P)½ �4� 2g,

to hold.

Figure 1. A sketch of the scaled state description of the event
of interest.
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In previous works,4,6,11 a subsolution is constructed

(assuming m2 4m1 in the works of Dupuis et al.4 and de

Boer and Scheinhardt11) and asymptotic efficiency is pro-

ven for a specific choice of W (x). In this paper, we provide
conditions on W (x) and prove that under these conditions,

we get an asymptotically efficient estimator. Afterwards,

we study the possibilities of the function W (x), and the

corresponding change of measure in Equation (3).

2.3. Subsolution approach

In both Dupuis et al.4 and Dupuis and Wang,6 the change

of measure for (two-node) tandem queues (and Jackson

networks) has been studied. In those papers, the change of

measure has been determined using subsolutions. We first

briefly recap the ideas presented in those papers and we

start with a formal definition of a subsolution, see also

Dupuis et al.4

Definition 2.1. A function W (x) is a classical subsolution

if:

1. W is continuously differentiable,

2. H(x,DW (x))ø 0 for every x 2 D [ d1[
d2 [ de [ d0,

3. W (x)4 0 for x 2 de.

In Dupuis et al.,4 there is an additional condition in this

definition that needs to hold at the boundaries of the state

space. Instead, we include the boundaries of the state

space in H(x,DW (x)), i.e., H(x,DW (x)) differs along the

boundaries (which is similar as in the work of Dupuis and

Wang6).

It is known from Glasserman and Kou2 and de Boer3

that for an asymptotically efficient change of measure it is

not possible that DW (x) is constant throughout the whole

state space as in the work of Parekh and Walrand,1 and in

the work of Dupuis et al.4 this is ‘‘confirmed,’’ since the

change of measure yielding an asymptotically efficient

estimator differs from the change of measure in the work

of Parekh and Walrand1 along one of the boundaries of the

state space and near the origin. Thus, to find an asymptoti-

cally efficient change of measure, we determine several

(constant) changes of measure for various regions of the

state space, in particular along the boundaries of the state

space, and combine these so that we have a change of mea-

sure for the whole state space.

To determine such a change of measure that differs

along various parts of the state space, in the work of

Dupuis et al.,4 there are multiple – say r – affine functions

W d
k (x), k = 1, . . . , r, considered such that for each of

these functions H(x,DW d
k (x))ø 0 for some part of the

state space, so that all r functions cover the whole state

space, and for at least one of these functions, we have

W d
k (x)4 0 for x 2 de. All these functions have the follow-

ing form:

W d
k (x)= hak , xi+ ck � dkd, ð5Þ

where ak =(ak, 1,ak, 2), which we assume to be finite,

specifies the gradient of W d
k (x) and both ck and dk . 0 are

constants. Combining these functions to W d(x) by taking

the minimum of these functions for all x, then results in a

piecewise affine function, that unfortunately is not con-

tinuously differentiable. That is, we have the following:

W d(x)=W d
1 (x) ^ . . . ^W d

r (x):

To satisfy the continuous differentiability, which is the

first requirement for a function to be a classical subsolu-

tion, the functions W d
k (x) are combined into a (continuous)

function W e, d(x) by a similar mollification procedure as in

the works of Dupuis et al.4 and Dupuis and Wang,5 where

in this case we obtain the following:

W e, d(x)=� e log
Xr

k = 1

e�W d
k
(x)=e, ð6Þ

such that W e, d(x) converges to W d(x) when e! 0.

Throughout this paper, we make the following assump-

tions on e and d (that depend on N), which also have been

made in previous works.4,6,11 For convenience, we do not

write the explicit dependence of e and d on N.

Assumption 2.1. We choose e and d dependent on N, such

that:

1. lim
N!‘

e= 0; 3. lim
N!‘

eN =‘;

2. lim
N!‘

d= 0; 4. lim
N!‘

e
d
= 0.

The gradient of Equation (6) is then used as change of

measure in Equation (3). It can be expressed as follows:

DW e, d(x)=
Xr

k = 1

rk(x)ak ,

where rk(x)=
e�W d

k
(x)=ePr

j= 1 e�W d
j
(x)=e

:

ð7Þ

The functions rk(x) are weight factors for the ‘‘influ-

ence’’ of each function W d
k (x), and so of each different

‘‘regional’’ change of measure, in the final change of mea-

sure. They can also be used to define a change of measure

slightly different than in Equation (3) as follows, see also

Dupuis et al.4 and de Boer and Scheinhardt11:

�Y(vi j x)=Y(vi)
Xr

k = 1

rk(x)e
�hak , viieH(x,ak ), ð8Þ

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



which we will refer to in this paper later on. In fact, we

will also show that asymptotic efficiency for the change of

measure in Equation (3) implies asymptotic efficiency for

the change of measure in Equation (8), similar as in the

work of de Boer and Scheinhardt.11 We note that, from an

implementation perspective, the change of measure in

Equation (8) is preferred over the change of measure in

Equation (3), see also Section 3.8.6 in the work of Dupuis

et al.4

2.4. Existing changes of measure

Now that the general ideas of Dupuis et al.4 and Dupuis

and Wang6 have been presented, we will show the differ-

ent functions W d(x) that have been used in the works of

Dupuis et al.4 and Dupuis and Wang6 to obtain an asymp-

totically efficient change of measure, as well as figures of

the function W d(x) for both bottleneck queues j, in the fol-

lowing sections.

2.4.1. Change of measure from Dupuis et al.4. In the work of

Dupuis et al.,4 queue 2 is always considered to be the bot-

tleneck queue because for the probability of interest, the

queues are interchangeable. In that paper, a subsolution

W d(x) is determined by considering three functions W d
k (x),

k = 1, 2, 3. The three functions from Dupuis et al.4 are as

follows:

W d
1 (x)=� g2x1 � g2x2 + g2 � d,

W d
2 (x)=� g2x1 + g2 � 2d,

W d
3 (x)= g2 � 3d,

ð9Þ

and the function W d(x) is illustrated in Figure 2. We

remark that also in the functions in Equation (9), we scaled

the results from Dupuis et al.4 (except for the constant in

front of d) by a factor 1/2, but this does not influence the

resulting changes of measure in Equations (3) and (8).

2.4.2. Changes of measure from Dupuis and Wang.6. In the

work of Dupuis and Wang,6 the work of Dupuis et al.4 is

extended to Jackson networks and hence in the work of

Dupuis and Wang,6 all queues being the bottleneck queue

are considered, as in this paper. Not only the probability

that the total number of customers in the system reaches

some high level N during a busy cycle of the system is con-

sidered in the work of Dupuis and Wang,6 but the authors

also consider buffer overflow in a single queue or in sev-

eral queues at the same time. If we consider a two-node

tandem queue with queue 2 being the bottleneck queue, we

find that the following four functions are used in Dupuis

and Wang6:

W d
1 (x)=� g1x1 � g2x2 + g2 � d,

W d
2 (x)=� g2x1 � g2x2 + g2 � 2d,

W d
3 (x)=� g1x1 + g2 � 3d,

W d
4 (x)= g2 � 4d,

ð10Þ

and W d(x) is illustrated in Figure 3.

In the work of Dupuis and Wang,6 the authors do not

explicitly mention by which constant d is multiplied,

Figure 2. The function Wd(x) from Equation (9). Queue 2 is
the bottleneck queue (so g2 4g1).

Figure 3. The function Wd(x) from Equation (10). Queue 2 is
the bottleneck queue (so g2 4g1).

Buijsrogge et al. 5



though implicit requirements with a proof for asymptotic

efficiency are given. For simplicity, we use kd throughout

this paper. It turns out that these values are sufficient for

asymptotic efficiency, as we show later in this paper, but

we will also see that they are by no means unique.

Since there is no limitation to queue 2 being the bottle-

neck queue in Dupuis and Wang,6 we also present the

result from Dupuis and Wang6 when queue 1 is the bottle-

neck queue. The result from Dupuis and Wang,6 when

queue 1 is the bottleneck queue, is different compared

with when queue 2 is the bottleneck queue, even though

for the probability of interest both queues are interchange-

able. When queue 1 is the bottleneck queue, the following

three functions are derived by Dupuis and Wang6:

W d
1 (x)=� g1x1 � g2x2 + g1 � d,

W d
2 (x)=� g1x1 + g1 � 2d,

W d
3 (x)= g1 � 3d,

ð11Þ

and the resulting function W d(x) is illustrated in Figure 4.

These subsolutions are very similar to the ones in

Equation (10), but with one function less. Also here, the

multiplication factor of d is not explicitly mentioned, but

we use the values above which are sufficient for asympto-

tic efficiency, as we will show later in this paper.

2.4.3. Comparison of the existing changes of measure. In this

section, we briefly comment on the similarities and differ-

ences of the changes of measure from Dupuis et al.4 and

Dupuis and Wang.6 We will do so by comparing the func-

tions W d(x) for all different cases (see Figures 2–4).
When queue 2 is the bottleneck queue, we see from

Figures 2 and 3 that along the x2-axis the function W d(x)
is roughly the same. The only difference is that in Figure 3

the function, along the x2-axis, is d lower. In particular,

this part of the state space covers the most likely path. In

all other parts of the state space, the function W d(x) in

Figure 3 is slightly steeper than in Figure 2 since g2 \ g1.

These observations suggest that any change of measure

based on some function W d(x) that somehow lies ‘‘in

between’’ the functions in Figures 2 and 3 is also asympto-

tically efficient. In Section 4, we show that this is indeed

the case.

When queue 1 is the bottleneck queue, there is not

much to compare. However, since there are already two

possibilities for the change of measure based on subsolu-

tions to be asymptotically efficient, and even more to

expect, when queue 2 is the bottleneck queue, also the

case when queue 1 is the bottleneck queue is studied in

Section 4.

3. Sufficient conditions for asymptotic
efficiency

Similar to Dupuis et al.4 and Dupuis and Wang,6 the con-

struction of the changes of measure in this paper is based

on finding appropriate subsolutions W e, d(x). We start with

a general proof for asymptotic efficiency for a change of

measure based on the subsolution approach and the molli-

fication procedure that is explained in Section 2.3. In our

theorem, we provide sufficient conditions for the subsolu-

tion yielding an asymptotic efficient change of measure,

which we use later for the derivation of the possibilities for

the change of measure. Afterwards, we discuss some gen-

eral observations with respect to some of the conditions in

our theorem.

3.1. Main result
Theorem 3.1. Consider a two-node M jM j1 tandem queue.

Let W d
k (x) be affine functions for all k = 1, . . . , r, as in

Equation (5), and let the classical subsolution W e, d(x) be

constructed using Equation (6). Then, using the gradient

of the function W e, d(x) as change of measure in

Equations (3) and (8) results in an asymptotically efficient

estimator if there exist functions f (N), g(N), and h(N )
with lim

N!‘
f (N )= lim

N!‘
g(N)= lim

N!‘
h(N)= 0, such that:

1.
Pr

k = 1 rk(x)H(x,ak)ø f (N );
2. W e, d(x)4 g(N ), for all x 2 de;

3. W e, d(0)ø g + h(N ).

Figure 4. The function Wd(x) from Equation(11). Queue 1 is
the bottleneck queue (so g1 4g2).
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Proof. We start by showing that under the above condi-

tions the change of measure in Equation (3) is asymptoti-

cally efficient, after which it follows that also the change

of measure in Equation (8) is asymptotically efficient

using a similar argument as in Theorem 2 from de Boer

and Scheinhardt.11 h

From Equations (2) and (3), it follows that the likeli-

hood ratio of a path L(P) is given by the following:

logL(P)=N
XtN�1

j= 0

hDW e, d(Xj),Xj+ 1 � Xji

�
XtN�1

j= 0

H(Xj,DW e, d(Xj)):

We find, using Equation (7), that for all states x we

have the following:

H(x,DW e, d(x))ø
Xr

k = 1

rk(x)H(x,ak),

due to concavity of H(x,DW e, d(x)) in its second argument,

see Proposition 3.2 in the work of Dupuis et al.4 Combining

the two expressions above, we arrive at the following:

logL(P)4N
XtN�1

j= 0

hDW e, d(Xj),Xj+ 1 � Xji

�
XtN�1

j= 0

Xr

k = 1

rk(Xj)H(Xj,ak) ð12Þ

4N
XtN�1

j= 0

hDW e, d(Xj),Xj+ 1 � Xji � f (N )tN , ð13Þ

where the last inequality follows from Condition 1.

Similar to Lemma 2 in the work of de Boer and

Scheinhardt,11 also when using r regions, we can obtain

the following bound. The idea of this Lemma in de Boer

and Scheinhardt11 is to replace the summation in Equation

(13) by W e, d(XtN
)�W e, d(0) and to give an upper bound

on the error that is introduced. Thus, since ak is finite by

construction, and hence jak j4 c for some 04 c \ ‘, we

find the following:

����N XtN�1

j= 0

hDW e, d(Xj),Xj+ 1 � Xji

� N (W e, d(XtN
)�W e, d(0))

����4 5c2

eN
tN : ð14Þ

Next, we follow similar steps as in Theorem 1 of the

same paper. By combining Equations (13) and (14) we

have the following:

logL(P)4 N (W e, d(XtN
)�W e, d(0))+

5c2

eN
tN � f (N )tN

4 g(N )� h(N )� gð ÞN +
5c2

eN
� f (N )

� �
tN ,

where the second inequality follows from Conditions 2

and 3 when XtN
2 de, and thus, we find, as in de Boer and

Scheinhardt,11 the following:

1

N
logE L(P)I(P)½ �

=
1

N
log E L(P)jI(P)= 1½ � � P(I(P)= 1)ð Þ

4
1

N
log E e

g(N )�h(N )�gð ÞN + 5c2

eN�f (N )
� �

tN j tN \ ‘

	 

pN

� �

= g(N )� h(N )� g +
1

N
logE e

5c2

eN�f (N )
� �

tN j tN \ ‘

	 


+
1

N
log pN : ð15Þ

To conclude the proof, we need Lemma 3 from de Boer

and Scheinhardt,11 which states that for any sequence

uN ø 0 such that lim
N!‘

uN = 0, we have the following:

lim
N!‘

1

N
logE euN tN j tN \ ‘

� �
= 0: ð16Þ

Thus, taking limits in Equation (15) gives the

following:

lim sup
N!‘

1

N
logE L(P)I(P)½ �

4lim sup
N!‘

 
g(N )� h(N )� g

+
1

N
logE e

5c2

eN�f (N )
� �

tN j tN \ ‘

	 

+

1

N
log pN

!

=� 2g, ð17Þ

where the last equation follows using Equation (1),

limN!‘ g(N)= limN!‘ h(N )= 0 and since 5c2

eN � f (N)
� �

! 0 when N ! ‘, we can apply Equation (16) to the

fourth term of Equation (17). This concludes the proof for

the change of measure in Equation (3).
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For the change of measure in Equation (8), we note that

similar to de Boer and Scheinhardt,11 we have the

following:

logL(P)= log
YtN�1

j= 0

1Pr
k = 1 rk(Xj)e�hak ,Xj+ 1�XjieH(Xj,ak )

=�
XtN�1

j= 0

log
Xr

k = 1

rk(Xj)e
�hak ,Xj+ 1�XjieH(Xj,ak )

 !

4
XtN�1

j= 0

Xr

k = 1

rk(Xj)hak ,Xj+ 1 � Xji

�
Xr

k = 1

rk(Xj)H(Xj,ak)

=
XtN�1

j= 0

hDW e, d(Xj),Xj+ 1 � Xji

�
Xr

k = 1

rk(Xj)H(Xj,ak),

where the inequality follows by concavity of the logarithm

and the last equality follows by definition of DW e, d(x),
see Equation (7). Thus, we have the same bound as in

Equation (12) and so we also find that the change of mea-

sure in Equation (8) is asymptotically efficient. h

Remark 3.1. In Equation (17), we see that we end up with

some term g(N )� h(N)� g, which goes to �g as N ! ‘.

This term arises from bounding W e, d(XtN
)�W e, d(0) on a

path that leads to the overflow level. However, we cannot

have W e, d(XtN
)�W e, d(0)\ � g when N ! ‘, since this

would contradict with Jensen’s inequality:

lim inf
N!‘

1

N
logE L(P)I(P)½ �ø� 2g:

That is, it is impossible to obtain a tighter bound. As a

result, we find that for an asymptotically efficient change

of measure we need W e, d(XtN
)�W e, d(0)! �g when

N ! ‘ on at least one path that leads to reaching the over-

flow level, e.g., the most likely path, see also Dupuis and

Wang.6 Thus, on such a path, we need lim
N!‘

W e, d(x)= 0

for x 2 de and lim
N!‘

W e, d(0)= g.

Remark 3.2. In the sequel, we use a slightly stronger con-

dition than Condition 1 of Theorem 3.1, namely that for

each k separately, we have rk(x)H(x,ak)ø fk(N ), where
limN!‘ fk(N )= 0.

Remark 3.3. It seems likely that Theorem 3.1 can also be

extended to a d-node M jM j1 tandem queue (and Jackson

networks), with the same sufficient conditions as in the

current statement for d = 2. To do so, observe that in the

proof of Theorem 3.1, Lemma 3 from de Boer and

Scheinhardt11 is the only part that restricts to d = 2 (and

hence to tandem queues). Thus, one could either extend

this result to d . 2 (and Jackson networks), or use simi-

lar techniques as in the works of Dupuis et al.4 and Dupuis

and Wang6 in order to show that the theorem holds in a

more general setting.

3.2. General observations

Now that we have shown under which conditions we

obtain an asymptotically efficient change of measure

based on subsolutions, it remains to find ak , ck and dk for

all k = 1, . . . , r such that Conditions 1, 2, and 3 of

Theorem 3.1 are satisfied.

In this section, we make some general observations

with respect to Conditions 1 and 3 of Theorem 3.1 when

considering a two-node M jM j1 tandem queue, that are

used later to construct the possibilities for the change of

measure. These observations are independent of the bottle-

neck queue.

3.2.1. Observations with respect to Condition 1 of
Theorem 3.1. We recall that the first condition isPr

k = 1 rk(x)H(x,ak)ø f (N ) for some f (N) with

limN!‘ f (N )= 0. In this section, we state some obser-

vations with respect to H(x,a) for some general a,
independent of k, after which we present some observa-

tions with respect to rk(x).
By considering all possibilities for 1fxj . 0g, j= 1, 2,

in a busy cycle of the system, we find the following from

Equation (4)

H(x,a)=

� log (le�a1 +m1ea1�a2 +m2ea2 ) if x1 . 0, x2 . 0,

� log (le�a1 +m1ea1�a2 +m2) if x1 . 0, x2 =0,

� log (le�a1 +m1 +m2e
a2) if x1= 0, x2 .0:

8><
>:

ð18Þ

We start by finding solutions to H(x,a)ø 0, for partic-

ular parts of the state space, or equivalently to the

following:

le�a1 +m1e
(a1�a2)1fx1 . 0g+m2ea21fx2 . 0g4 1: ð19Þ

In Lemma 3.2, we consider xj . 0 for j= 1, 2. We fix

either a1 or a2, and we show for which values of a2

or a1Equation (19) holds. In Lemma 3.3, we state two

relations considering Equation (19), at one of the

boundaries (either x1= 0 or x2 = 0) that will be used

several times later in this paper. In Sections 4.1–4.4,

we use the results of these Lemmas to lower boundPr
k = 1 rk(x)H(x,ak), such that Condition 1 of

Theorem 3.1 is satisfied.
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Lemma 3.2. Suppose xj . 0 for j= 1, 2. We prove the fol-

lowing statements:

� If a2 =� g2, then Equation (19) holds iff

a1 2 ½�maxj gj, �minj gj�;
� If a1 =� g1, then Equation (19) holds iff

a2 2 ½�g2, 0�;
� If a1 =� g2, then Equation (19) holds iff

a2 2 ½�g2, g1 � g2�;
� If a1 = 0, then Equation (19) holds iff

a2 2 ½0, g1 � g2�.

Proof. For the first statement, let a2 =� g2 and xj . 0 for

j= 1, 2. Then, Equation (19) reduces to

le�a1 + m1m2=lð Þea1 + l4 1 which holds if and only if:

(1� m1 � m2)
2x2 � (m1 +m2)(1� m1 � m2)x+m1m2 4 0:

where we let x= e�a1 . Using elementary calculus we find

that a1 2 ½�maxj gj, �minj gj�. The other statements fol-

low similarly. h

As a result of Lemma 3.2, we can sketch the level set

for all a1, a2 such that H(x,a)= 0 for all x. 0, using

the concavity of the function shown in the work of Dupuis

et al.4 see Figures 5 and 6.

In the following lemma, we consider Equation (19) at

one of the boundaries given a certain choice for either a1

or a2. The first equation considers x1 . 0, x2 = 0 and

a1=� g1, and the second equation considers x1 = 0,

x2 . 0 and a2 =� g2.

Lemma 3.3. m1 + le�a2 +m2 4 1 iff a2 ø 0, and

le�a1 +m1 +l4 1 iff a1 ø� g2.

Proof. The statements follow directly by elementary calcu-

lus, combined with l+m1 +m2 = 1 and l . 0. h

We conclude this section with a remark on rk(x). Using
Equation (7) we find the following:

rk(x)=
e�W d

k
(x)=ePr

i= 1 e�W d
i
(x)=e

4
e�W d

k
(x)=e

e�W d
‘
(x)=e

= e W d
‘
(x)�W d

k
(x)ð Þ=e,

ð20Þ

for any ‘, where the inequality follows trivially.

3.2.2. Observations with respect to Condition 3 of Theorem
3.1. In Remark 3.1, it is noted that we need �h(N )

4W e, d(0)� g 4 h(N) such that lim
N!‘

h(N )=

lim
N!‘

�h(N )= 0. This is satisfied when W d
k (0)� g ø �hk(N ),

such that limN!‘
�hk(N )= 0 for all k and W d

k (0)�
g 4 hk(N ), such that limN!‘ hk(N )= 0 for some k, see

Equation (6). By Equation (5), we have W d
k (0)= ck � dkd.

Therefore, we find the following:

ck = g for all k,

as a sufficient condition to satisfy Condition 3 since d! 0

when N ! ‘ by Assumption 2.1.

As a result of the observations above, to construct the

possibilities for the change of measure, it remains to find ak

and dk for all k = 1, . . . , r that satisfy Conditions 1, 2, and

3 of Theorem 3.1. This is the topic of the next section.

4. Construction of the subsolution W e, d(x)

In this section, we construct possible subsolutions, based

on the approach mentioned in Section 2.3, that satisfy the

conditions in Theorem 3.1 and thus yield an asymptotically

efficient estimator. It may not be clear at first sight that the

method below results in subsolutions that satisfy all these

conditions, since the construction is partly based on intui-

tion. However, we conclude all sections by showing that

the conditions are indeed satisfied.

For the two-node M jM j1 tandem queue, we consider

both possibilities for the bottleneck queue, i.e., we consider

both queue 1 and queue 2 as bottleneck queue. In addition,

we focus on a maximum of four different regions. More

Figure 5. Sketch of the level set for which H(x,a)= 0 (i.e.,
Equation (19) holds with equality) for x. 0, when queue 2 is the
bottleneck queue (and so g2 4g1).

Figure 6. Similar to Figure 5, but when queue 1 is the
bottleneck queue (and so g1 4g2).
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regions may or may not be possible. However, this is unde-

sirable from a practical point of view and does not contrib-

ute to an easier implementation of the change of measure.

We start using three regions and queue 2 being the bot-

tleneck queue, since this case has been studied most in lit-

erature. Afterwards, we consider three regions and queue 1

the bottleneck queue. We conclude this section with four

regions, for which we again consider both queue 2 and

queue 1 as the bottleneck, respectively. For brevity, when

considering four regions, we will only state the result of

the construction (which is similar to the construction when

having three regions) and show that indeed the conditions

in Theorem 3.1 are satisfied.

4.1. Three regions and queue 2 bottleneck

In this section, our starting point is to consider three func-

tions W d
k (x), k = 1, 2, 3, and we let queue 2 be the bottle-

neck queue, thus g2 4 g1. As the boundaries turned out to

be crucial in designing an asymptotically efficient change of

measure, we consider the following regions: (i) x2 . 0,

which also covers x1 = 0; (ii) x1 . 0, which also covers

x2 = 0; and (iii) x1 ø 0 and x2 ø 0, so that we have covered

the whole state space. All regions overlap in the sense that

they all cover the case in which both x1 . 0 and x2 . 0.

However, by construction of the continuously differentiable

subsolution, in that part of the state space the function W d
k (x)

of only one of the three regions will be used since we use the

minimum of the functions W d
k (x). Clearly, the third region

covers the whole state space, but it is important to note that

there is no non-trivial solution that satisfies Condition 1 from

Theorem 3.1 for the whole state space. The most important

part of region three is that it covers x1 = x2 = 0.

It turns out that the zero change of measure can be used

when both x1 = x2 = 0. This may seem strange at first

sight, since simulating under the zero change of measure

is the same as simulating the original system. However,

using this as a starting point for this part of the state space

turns out to be a good choice (which is the same choice as

in the works of Dupuis et al.4 and Dupuis and Wang6). In

particular, the condition in Equation (19) for this part of

the state space is equivalent to a3, 1 ø 0. The zero change

of measure gives us a3 =(a3, 1,a3, 2)= (0, 0) and hence

satisfies the condition mentioned.

The ordering of the regions that we assign can be found

in Table 1, the reasons for this ordering will become clear

later in this section.

4.1.1. Finding a1. To find a1, we start with Condition 2,

which is W e, d(x)4 g(N ) for all x 2 de, where

limN!‘ g(N )= 0. In Remark 3.1, it is noted that for the

most likely path equality should hold. Trivially, we have

W e, d(x)4W d
1 (x), with equality on the most likely path

when N ! ‘, since W d
1 (x) covers the most likely path. As

a result, taking into account Section 3.2.2 and recalling

that ak =(ak, 1,ak, 2) for all k, we must have a1, 2 =� g2.

Using Condition 1, we can now determine a1, 1. We

only consider the term of the summation from this condi-

tion that involves k = 1, i.e., r1(x)H(x,a1) should be non-
negative for large enough N. As W d

1 (x) is not designed for

x2 = 0, the intuition is that the weight factor r1(x) tends
to 0 for large enough N for all states x such that x2 = 0,

see also Equation (28). Thus, using Equation (18) for

a=a1, we see that for all x such that x2 . 0, we can only

satisfy Condition 1, if we have the following:

le�a1, 1 +
m1m2

l
ea1, 1 + l4 1, ð21Þ

le�a1, 1 + m1 + l4 1, ð22Þ

where we used a1, 2 =� g2. As a result of Lemma 3.2, the

first bullet, we find that Equation (21) is satisfied when

a1, 1 2 ½�g1, � g2�. Using Lemma 3.3, we find that

a1, 1 ø� g2 is necessary to satisfy Equation (22), and

hence, we must have a1, 1 =� g2. Therefore, we need the

following:

a1 =(� g2, � g2),

to get an asymptotically efficient change of measure based

on Theorem 3.1. For future reference, we remark that as a

result of this condition on a1 we find the following, using

Equation (18),

r1(x)H(x,a1)=

0 if x1 . 0, x2 . 0,

�r1(x) log (m1 + 2m2) if x1 . 0, x2 = 0,

0 if x1 =0, x2 . 0, ð23Þ

8><
>:

since l+m1 +m2 = 1.

4.1.2. Finding a2. Using the underlying idea of the con-

struction of the subsolution – i.e., the idea to construct sev-

eral functions, each for different parts of the state space,

that are combined through mollification to obtain a classi-

cal subsolution – we determine conditions on a2 and dk

for k = 1, 2, 3. For some parts of the state space, it is

known which function W d
k (x) has to be the minimum of

the three functions or cannot be the minimum of the three.

Table 1. Overview of proposed regions for the case r = 3.

Region k

x2 . 0 1
x1 . 0 2
x1 ø 0, x2 ø 0 3
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For example, when x1 = 0, it follows that W d
2 (x) cannot

be the minimum function, since it is designed for x1 . 0.

As a result, we find that for some parts of the state space,

some weight factors rk(x) must tend to 0 as N ! ‘.

To start with, we consider the origin of the state space,

i.e., x1 = x2 = 0. Here, we want W d
3 (x) to be the minimum

function, since this is the only function that is designed for

this part of the state space. Thus, we need both

W d
3 (x)\ W d

1 (x) and W d
3 (x)\ W d

2 (x) for x= 0. Trivially,

these inequalities result in the following:

d1 \ d3 and d2 \ d3: ð24Þ

Second, we consider the boundary x2 = 0 (and so

x1 . 0). At this part of the state space, we want W d
2 (x) to

be the minimum function. Thus, we want to have both:

W d
2 (x)\ W d

1 (x) , (a2, 1 � a1, 1)x1 \ (d2 � d1)d, ð25Þ

W d
2 (x)\ W d

3 (x) , a2, 1 x1 \ (d2 � d3)d, ð26Þ

for all x such that x2 = 0. Clearly, the first inequality holds

for all x1 whenever:

a2, 1 4a1, 1 =� g2 and d1 \ d2: ð27Þ

As a result, we immediately have, for all x such that

x2 = 0, using Equation (20) for k = 1 and ‘= 2, the

following:

r1(x)4 e((g2 +a2, 1)x1 +(d1�d2)d)=e 4 e(d1�d2)d=e, ð28Þ

for all a2, 1 4� g2 and since d1 \ d2, the right-hand side

tends to 0 as N tends to infinity. This intuitively implies

that the weight factor r1(x) for x such that x2 = 0 tends

to 0 when N ! ‘, as suggested in Section 4.1.1, and thus,

the change of measure that is designed for x2 . 0 hardly

has any influence when x2 = 0.

The second inequality, Equation (26), is satisfied for all

x1 .
(d3�d2)d
�a2, 1

, which is positive because a2, 1 4� g2 \ 0,

see Equation (27), and d2 \ d3. Thus, W d
2 (x) is the mini-

mum function for all x1 .
(d3�d2)d
�a2, 1

, and note that the right-

hand side of this inequality tends to zero as N ! ‘. For all

other (very small) x1, the function W d
3 (x) is the minimum

function. It turns out in the sequel that this is not a problem

for the resulting change of measure to be asymptotically

efficient, since the function W d
3 (x) can be used throughout

the whole state space. More importantly, W d
1 (x) is not the

minimum function for all x such that x1 . 0 and x2 = 0

whenever Equation (27) holds.

Combining all conditions on dk, see Equations (24)

and (27), we find d1 \ d2 \ d3. Here, we see that the

choice dk = k, as in the work of Dupuis et al.,4 satisfies all

requirements that we have imposed until now to get an

asymptotically efficient change of measure based on

Theorem 3.1, but it is by no means unique.

Next, we consider the boundary x1 = 0 (and so x2 . 0).

Here, we want W d
1 (x) to be the minimum function, since

all other functions are not designed for this part of the state

space. Thus, for all x such that x1 = 0, we want to have

both:

W d
1 (x)\ W d

2 (x), (a1, 2 � a2, 2)x2\ (d1 � d2)d, ð29Þ

W d
1 (x)\ W d

3 (x), a1, 2 x2 \ (d1 � d3)d : ð30Þ

The first inequality is equivalent to the following:

(a2, 2 + g2)x2 . (d2 � d1)d:

which unfortunately holds only for x2 . (d2 � d1)d=
(a2, 2 +g2), provided that a2, 2 . � g2. Since we do not

want W d
2 (x) to be the minimum function for x such that

x1 = 0 and x2 4 (d2 � d1)d=(a2, 2 + g2), we need

W d
3 (x)\ W d

2 (x) for those states x. This condition is equiv-

alent to the following:

a2, 2x2 . (d2 � d3)d, ð31Þ

and if a2, 2 ø 0 this inequality holds for all x2, so in particular

for x2 4 (d2 � d1)d=(a2, 2 + g2). So we need the following:

a2, 2 ø 0: ð32Þ

As a result, using Equation (20) for k = 2 and ‘= 3,

we find for all x such that x1 = 0:

r2(x)4 e(�a2, 2x2 +(d2�d3)d)=e 4 e(d2�d3)d=e: ð33Þ

Since d2 \ d3, the right-hand side tends to 0 as N ! ‘

and this implies that the weight factor r2(x) for all x such

that x1 = 0 tends to 0 as N ! ‘. Therefore, the change of

measure that is designed for x1 . 0, has hardly any influ-

ence when x1 = 0.

The second inequality, Equation (30), is satisfied for all

x2 . (d3 � d1)d=g2. Thus, W d
1 (x) is smaller than W d

3 (x)
for all x2 . (d3 � d1)d=g2. As a result, for all

x2 4 (d3 � d1)d=g2 we have that W d
3 (x) is the minimum

function (which is not a limitation for the resulting

change of measure to be asymptotically efficient since

this function can be used for the whole state space).

Recall that it is more important that W d
2 (x) is not the

minimum function for all x1 = 0 and x2 . 0, and this

requirement is satisfied.

To derive a lower bound on a2, 1 and an upper bound on

a2, 2, in contrast to the bounds in Equations (27) and (32),

we use Condition 1 of Theorem 3.1. In this case, we only

consider the term of the summation from this condition

that considers k = 2, since this involves a2. That is,

r2(x)H(x,a2) should be non-negative for large enough N.
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Recall that we have derived an upper bound for r2(x) for
all x such that x1 = 0, see Equation (33), that tends to 0 as

N ! ‘. Thus, for all x such that x1 . 0 we see that, using

Equation (18) for a=a2, we can only satisfy Condition 1,

if we have the following:

le�a2, 1 +m1e
a2, 1�a2, 2 +m2e

a2, 2 4 1, ð34Þ

le�a2, 1 +m1e
a2, 1�a2, 2 +m2 4 1: ð35Þ

It is clear that, as we have a2, 2 ø 0 from Equation (32),

the second inequality is implied by the first inequality.

Using Lemma 3.2, Figure 5, and Equations (27) and (32),

we find that the first inequality can only be satisfied when:

a2, 1 2 ½�g1, � g2� and a2, 2 2 ½0, g1 � g2�:

Clearly, a2, 1 and a2, 2 have a dependence, e.g.,

a2, 1 =� g1 implies a2, 2 = 0 and a2, 1 =� g2 implies

a2, 2 2 ½0, g1 � g2�, see Lemma 3.2 and Figure 5. The

dependence can be found in Equation (34), however, this

equation cannot be simplified. For future reference, we

remark that as a result of these conditions on a2, we find

from Equation (18), using a2, 1 ø� g1 and

a2, 2 4 g1 � g2:

r2(x)H(x,a2)ø

0 if x1 . 0, x2 . 0,
0 if x1 . 0, x2= 0,
�r2(x) log (3m1) if x1=0, x2 . 0,

8<
:

ð36Þ

since l+m1 +m2= 1.

4.1.3. Summary and proof that all conditions are satisfied. To

summarize, we have found the following values for a1,

a2, and a3 that intuitively satisfy all conditions for an

asymptotically efficient change of measure based on

Theorem 3.1, see Table 2.

We show that these possibilities for ak , k = 1, 2, 3,
indeed give an asymptotically efficient change of measure,

by considering all conditions in Theorem 3.1. Recall that

l+m1 +m2 = 1 implies H(x,a3)= 0. To start with

Condition 1, using Equations (23), (28), (33), and (36), we

find the following lower bound:

X3
k¼1

rkðxÞðx;akÞ

ø

0 if x1 > 0; x2 > 0

�eðd1�d2Þd=e logðm1 þ 2m2Þ if x1 > 0; x2 ¼ 0

�eðd2�d3Þd=e logð3m1Þ if x1 ¼ 0; x2 > 0

8><
>:

ø � emaxfd1�d2;d2�d3gd=e logð3m1Þ;

where the last step follows since queue 2 is the bottleneck

queue, and thus, m2 4m1. It follows that Condition 1 is

satisfied. For Condition 2, we note that for all x 2 de we

have W d
1 (x)=� d1d, and thus, Condition 2 is satisfied

since W e, d(x)4W d
1 (x). To conclude with Condition 3, we

find the following:

W e, d(0)ø� e log (3e�W d
3
(0)=e)=� e log 3+W d

3 (0)

=� e log 3+ g2 � d3d, ð37Þ

which goes to g2 as N ! ‘ and hence all conditions are

satisfied. Therefore, the change of measure for the given

possible values of a1, a2, a3 and dk, k = 1, 2, 3, is asymp-

totically efficient. Note that also the conditions in

Remark 3.1 are satisfied, based on the construction.

4.1.4. Discussion. It is clear that the choice of

a2 =(� g2, 0) results in the change of measure from

Dupuis et al.,4 using dk = k for k = 1, 2, 3. For this case,

W d(x) is illustrated in Figure 2. We show some other

examples of the piecewise affine function W d(x) below,

where we let a2 =(� g1, 0) in Figure 7 and

Table 2. Possibilities for ak when queue 2 is the bottleneck
queue, provided that d1 \ d2 \ d3.

ak, 1 ak, 2 k Condition

x2 . 0 �g2 �g2 1
Equation (34)x1 . 0 ½�g1, � g2� ½0,g1 � g2� 2

x1 ø 0, x2 ø 0 0 0 3

Figure 7. Display of Wd(x) when queue 2 is the bottleneck
queue, a2 =(� g1, 0) and dk = k, k= 1, 2, 3.
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a2 =(� g2, g1 � g2) in Figure 8. In both cases, we

choose dk = k, k = 1, 2, 3.
Choosing a2, 2 = 0, we find a2, 1 2 ½�g1, � g2�, and

thus, W d(x) can be ‘‘anything in between’’ Figures 2

and 7. That is, the narrow area next to the x1-axis in Figure

2 can be as steep as in Figure 7, and anything in between,

while the resulting change of measure still gives an asymp-

totically efficient estimator. Choosing a2, 1 =� g2, we

find a2, 2 2 ½0, g1 � g2�, and thus, W d(x) can be ‘‘anything

in between’’ Figures 2 and 8. That is, the narrow area next

to the x1-axis in Figure 2 can be slightly tilted, while the

resulting change of measure still gives an asymptotically

efficient estimator.

We remark that the change of measure that is used for

x2 . 0 is the state-independent change of measure from

Parekh and Walrand.1 The changes of measure that are found

here, can be interpreted as ‘‘protecting’’ the x1-axis in the

sense that we have to apply a different change of measure in

that part of the state space. In Figure 7, we protect the x1-axis

quite a lot, rather than in Figure 8, where we only protect it

slightly. Recall that the most likely path goes along the x2-

axis, where we have to apply the change of measure from

Parekh and Walrand,1 which also follows from the subsolu-

tion approach. It turns out that the change of measure along

the most likely path is very important in the construction of

an asymptotically efficient change of measure based on sub-

solutions and that along the most likely path there is no var-

iation possible for the change of measure. However, it turns

out that for all other parts of the state space it is possible to

apply a (slightly) different change of measure than the one

from Dupuis et al.4 As we have seen in the work of Dupuis

and Wang6 and as we will see in Section 4.3, it is also possi-

ble to apply a different change of measure in the interior of

the state space, rather than the same change of measure as

along the most likely path or the change of measure that is

applied along the x1-axis.

4.2. Three regions and queue 1 bottleneck

In this section, we again consider three functions W d
k (x),

k = 1, 2, 3, but in contrast to Section 4.1, we now let

queue 1 be the bottleneck queue, so g1 4 g2. The regions

that we consider in this section are the same as in the pre-

vious section (see Table 1). By changing the bottleneck

queue, the most likely path also changes and, therefore,

we start the construction of an asymptotically efficient

change of measure based on Theorem 3.1 by finding a2.

4.2.1. Finding a2. To find a2, we start with Condition 2, as

in Section 4.1.1, and we use Remark 3.1 to determine a2, 1.

When queue 1 is the bottleneck queue, the most likely path

is covered by W d
2 (x). Therefore, we find a2, 1 =� g1.

Next, we use Condition 1 to determine a2, 2.

Considering the term of the summation in this condition

that involves k = 2, we need r2(x)H(x,a2) to be non-

negative for large enough N. For those parts of the state

space where x1 = 0, we will find in the sequel that the

weight factor r2(x) tends to 0 as N ! ‘. Since the func-

tion W d
2 (x) is designed for x1 . 0, it is expected that in

that case the weight factor r2(x) does not tend to 0 as

N ! ‘. Thus, using Equation (18) for a=a2, for all x

such that x1 . 0 we see that we can only satisfy

Condition 1 from Theorem 3.1 if we have the following:

m1 + le�a2, 2 +m2e
a2, 2 4 1,

m1 + le�a2, 2 +m2 4 1,

where we used a2, 1 =� g1. Using the second bullet of

Lemma 3.2 and Lemma 3.3, we find that both of the above

conditions hold when a2, 2 = 0. Thus, to get an asymptoti-

cally efficient change of measure based on Theorem 3.1,

we need the following:

a2 =(� g1, 0):

For future reference, we remark that as a result of this

condition we find, using Equation (18) and

l+m1 +m2 = 1, the following:

r2(x)H(x,a2)=

0 if x1 . 0, x2 . 0,

0 if x1 . 0, x2= 0,

�r2(x) log (2m1 +m2) if x1=0, x2 . 0,

8><
>: ð38Þ

4.2.2. Finding a1. As in Section 4.1.2, we use the underly-

ing idea of the construction of subsolutions to determine

conditions on a2 and dk for k = 1, 2, 3. Since this approach
has been fully explained in Section 4.1.2, we will skip

most of the details and highlight the results.

Figure 8. Display of Wd(x) when queue 2 is the bottleneck
queue, a2 =(� g2,g1 � g2) and dk = k, k= 1, 2, 3.
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By considering the origin of the state space, i.e.,

x1 = x2 = 0, we immediately find the same result as in

Equation (24), since that result is independent of a1

and a2.

Next, we consider the boundary x2 = 0 (and so x1 . 0)

and recall that in that case, we want W d
2 (x) to be the mini-

mum function. The conditions that follow from this obser-

vation can be found in Equations (25) and (26). Since we

have determined that a2 =(� g1, 0), these conditions are
equivalent to the following:

(a1, 1 + g1)x1 . (d1 � d2)d,

g1x1 . (d3 � d2)d: ð39Þ

The first condition is satisfied when:

a1, 1 ø� g1 and d1 \ d2, ð40Þ

since then the right-hand side of the inequality is negative.

Similarly to Equation (28) we find the following:

r1(x)4 e((�g1�a1, 1)x1 +(d1�d2)d)=e 4 e(d1�d2)d=e, ð41Þ

and so the weight factor r1(x) for x such that x2 = 0 tends

to zero when N ! ‘.

For the second condition, see Equation (39), we find

that this is satisfied for all x1 .
(d3�d2)d

g1
, and so for small

values of x1 the function W d
3 (x) is the minimum function.

It turns out that this is not a problem for the resulting

change of measure to be asymptotically efficient, since the

function W d
3 (x) can be used throughout the whole state

space and since W d
2 (x)\ W d

1 (x) for all x such that x2 = 0.

Therefore, it is ruled out that W d
1 (x) is the minimum func-

tion for these x, as desired.

At the boundary x1 = 0 (and so x2 . 0), we want

W d
1 (x) to be the minimum function. As a result, we want

Equations (29) and (30) to hold. These conditions are

equivalent to the following:

a1, 2x2 \ (d1 � d2)d,

a1, 2x2 \ (d1 � d3)d:

Clearly, both conditions are satisfied when the second

condition holds, since d2 \ d3. In particular, we need the

following:

a1, 2 \ 0,

since d1 \ d3, so that both conditions are satisfied for all

x2 .
(d3�d1)d
�a1, 2

. To prevent W d
2 (x) from being the minimum

function for x such that x1 = 0 and x2 4
(d3�d1)d
�a1, 2

, we need

W d
3 (x)\ W d

2 (x) for those states x. This condition is equiv-

alent to Equation (31), and since a2, 2 = 0 and d2 \ d3,
this condition is always satisfied. As a result, we find for

all x such that x1 = 0 that Equation (33) holds.

To get a tighter condition for a1, 2 we use Condition 2

from Theorem 3.1. That is, for all x on the exit boundary

we need to have W e, d(x)4 g(N ) such that g(N )! 0

when N ! ‘. As we have W e, d(x)! W d(x) when

N ! ‘, we in particular need W d
1 (x) to be non-positive

for large enough N when x1 = 0 and x2 = 1, since W d
1 (x)

is designed to be the minimum function at the boundary

x1 = 0 (and so x2 . 0). Therefore we find the following:

a1, 2 4� g1: ð42Þ

Using the same condition of Theorem 3.1, we also

derive an upper bound on a1, 1. Consider W d
2 (x)=� g1

x1 + g1 � d2d, which is non-positive for all x1 ø

(g1 � d2d)=g1. Thus, for all x1 \ (g1 � d2d)=g1, we need

W d
1 (x) to be non-positive for all x 2 de. On the exit

boundary we have x1 + x2 = 1, so we find that for all

x 2 de, using Equation (42),

W d
1 (x)=a1, 1x1 +a1, 2(1� x1)+ g1 � d1d

4 (a1, 1 + g1)x1 � d1d,

which goes to zero as N ! ‘ if and only if a1, 1 4� g1.

Combining with Equation (40) we find the following:

a1, 1 =� g1:

To conclude, we derive a lower bound on a1, 2 using

Condition 1. We only consider the term of the summation

in Condition 1 that involves k = 1. That is, r1(x)H(x,a1)
should be non-negative for large enough N. We do not

expect that r1(x)! 0 when N ! ‘ for all x such that

x2 . 0, as W d
1 (x) is designed for x2 . 0. Thus, using

Equation (18) for a=a1, for all x such that x2 . 0, we

see that we can only satisfy Condition 1, if we have the

following:

m1 + le�a1, 2 +m2e
a1, 2 4 1, ð43Þ

m1 +m1 +m2e
a1, 2 4 1, ð44Þ

where we have used that a1, 1 =� g1. Using

Equation (42), it follows that the second inequality is

implied by the first inequality. Using Lemma 3.2, the sec-

ond bullet, we find that Equation (43) is satisfied when

a1, 2 2 ½�g2, � g1�, and so is Equation (44). For future

reference, we remark that as a result of this condition we

find, using Equation (18) and a1, 2 ø� g2,

r1(x)H(x,a1)ø

0 if x1 . 0, x2 . 0,

�r1(x) log (m1 + 2m2) if x1 . 0, x2 = 0,

0 if x1= 0, x2 . 0,

8><
>: ð45Þ

since l+m1 +m2 = 1.
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4.2.3. Summary and proof that all conditions are
satisfied. Summarizing, we have found the following val-

ues for a1, a2, and a3 that intuitively satisfy all conditions

for an asymptotically efficient change of measure based

on Theorem 3.1, see Table 3.

Again, we show by considering all conditions in that

theorem, indeed these possibilities for ak , k = 1, 2, 3, give
an asymptotically efficient change of measure. We start

with Condition 1. First, recall that H(x,a3)= 0, since

a3 = 0 and l+m1 +m2 = 1. Then, from Equations (33),

(38), (41), and (45), we find the following:

X3
k = 1

rk(x)H(x,ak)

ø

0 if x1 . 0, x2 . 0

�e(d1�d2)d=e log (m1 + 2m2) if x1 . 0, x2= 0

�e(d2�d3)d=e log (2m1 +m2) if x1=0, x2 . 0

8><
>:

ø� emaxf(d1�d2), (d2�d3)gd=e log (3m2),

where the final inequality follows since m1 4m2 and so

Condition 1 of Theorem 3.1 is satisfied. For Condition 2,

we note for all x 2 de we have W d
1 (x)4� d1d, and thus,

Condition 2 is satisfied, since W e, d(x)4W d
1 (x). To con-

clude with Condition 3, we find a similar lower bound to

W e, d(0) as in Equation (37), with g2 replaced by g1, since

queue 1 is the bottleneck queue. Therefore, the change of

measure for the given possible values of a1, a2, a3, and

dk, k = 1, 2, 3 is asymptotically efficient.

4.2.4. Discussion. For dk = k for k = 1, 2, 3, it is clear that
choosing a1 =(� g1, � g2) results in the change of mea-

sure from Dupuis and Wang6 and, for this case, W d(x) is
illustrated in Figure 4. Another example for W d(x), where
we choose a1 =(� g1, � g1), is illustrated in Figure 9.

As can be seen in Table 3, a1, 2 can range from �g2 to

�g1, and thus, W d(x) can be ‘‘anything in between’’

Figures 4 and 9. That is, the area next to the x2-axis and in

the interior in Figure 9 can be as steep as in Figure 4 and

anything in between. Note that Figure 9 is very similar to

Figure 2 in the sense that g2 is replaced by g1, and so in

particular when g1 = g2 the change of measure based on

this function W d(x) can be used.

When queue 1 is the bottleneck queue, we find that

the state-independent change of measure from Parekh

and Walrand1 is only used around x2 = 0. While when

queue 2 is the bottleneck queue, the change of measure

based on W e, d(x) can be interpreted as that we have to

‘‘protect’’ the x1-axis, see also Section 4.1, it seems natu-

ral that we have to ‘‘protect’’ the x2-axis when queue 1 is

the bottleneck queue. Looking at Figures 4 and 9, we see

that this is clearly not the case. One could argue that in

this way we are ‘‘overprotecting’’ the x2-axis. However,

it turns out that for an asymptotically efficient change of

measure based on subsolutions we only need to have the

state-independent change of measure from Parekh and

Walrand1 along the most likely path, which in this case

is along the x1-axis.

4.3. Four regions and queue 2 bottleneck

In this section, the starting point is to use four functions

W d
k (x), k = 1, 2, 3, 4, and we let queue 2 be the bottleneck

queue, thus g2 4 g1. The regions that we consider can be

found in Table 4, and the only difference compared with

Section 4.1, where we considered three regions, is that we

now have a dedicated region in case xj = 0 for some

queue j.

The zero change of measure is used when both

x1 = x2 = 0, for similar reasons as in Section 4.1. The

only difference is that we now set a4 = 0, instead of

a3 = 0 as in Section 4.1.

The derivation for using four regions is very similar as

when using two regions and, therefore, it is omitted in this

paper. A detailed derivation can be found in Buijsrogge.12

Table 3. Possibilities for ak when queue 1 is the bottleneck
queue, provided that d1 \ d2 \ d3.

ak, 1 ak, 2 k

x2 . 0 �g1 ½�g2, � g1� 1
x1 . 0 �g1 0 2
x1 ø 0, x2 ø 0 0 0 3

Figure 9. Display of Wd(x) when queue 1 is the bottleneck
queue, a1 =(� g1, � g1) and dk = k, k= 1, 2, 3.
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4.3.1. Summary and proof that all conditions are satisfied. We

have found the following values for a1, a2, a3, and a4

that intuitively satisfy all requirements for an asymptoti-

cally efficient change of measure based on Theorem 3.1,

see Table 5.

We show that these possibilities for ak , k = 1, 2, 3, 4,
indeed give an asymptotically efficient change of measure,

by considering all conditions in Theorem 3.1. Recall that

l+m1 +m2 = 1 implies H(x,a4)= 0. To start with

Condition 1 of Theorem 3.1, we find the following:

X3
k = 1

rk(x)H(x,ak)

ø

0 if x1 . 0, x2 . 0

�e(d1�d2)d=e log (m1 + 2m2) if x1 . 0, x2=0

�e(d2�d3)d=e log (3m1) if x1= 0, x2 . 0

8><
>:

ø � emaxfd1�d2, d2�d3gd=e log (3m1),

where the first step follows by conveniently substituting

the upper and lower bounds on ak from Table 5 and the

last step follows since queue 2 is the bottleneck queue, and

hence l \ m2 4m1, and since d1 \ d2 \ d3 \ d4. It

follows that Condition 1 is satisfied. For Condition 2, we

note that for all x 2 de we have W d
2 (x)=� d2d, and thus,

Condition 2 is satisfied since W e, d(x)4W d
2 (x). Condition

3 follows similarly as in Equation (37). Therefore, the

change of measure for the given possible values of a1, a2,

a3, a4, and ak , k = 1, 2, 3, 4, is asymptotically efficient.

4.3.2. Discussion. From Table 5, we again see that the

change of measure from Parekh and Walrand1 is used for

x1 = 0 and x2 . 0, as expected, since it is the region in

which the most likely path lies. Clearly, the result in the

work of Dupuis and Wang6 satisfies the conditions in

Table 5. Recall that in that paper also different overflow

probabilities are considered, which imposes additional

constraints for an asymptotically efficient change of mea-

sure based on subsolutions. The change of measure from

Dupuis and Wang,6 where in particular

a1 =(� g1, � g2) and a3 =(� g1, 0), can be found in

Figure 3.

From the results in Table 5, it is also clear that we could

adapt Figure 3 such that along the x1-axis we have a simi-

lar affine function as in Figure 7 or Figure 8. However,

when choosing a3 =(� g2, g1 � g2), as we did for a2 in

Figure 8, we need a1, 1 =� g2 and so the functions W d
1 (x)

and W d
2 (x) are almost the same. That is, only their con-

stants d1 and d2 would differ.

Summarizing, at the x1-axis, we can make similar adap-

tations as when we considered three regions in Section

4.1. The difference is that now also in the interior we can

‘‘push’’ the function a bit more toward the origin when we

compare with Figure 2.

4.4. Four regions and queue 1 bottleneck

In this section, we again consider four functions W d
k (x),

k = 1, 2, 3, 4, but in contrast to Section 4.3, we let queue 1

be the bottleneck queue, i.e., g1 4 g2. The regions that we

consider in this section are the same as in the previous sec-

tion (see Table 4). Again, the derivation for using four

regions is very similar as when using two regions and

therefore it is omitted in this paper. Recall that a detailed

derivation can be found in the work of Buijsrogge.12

4.4.1. Summary and proof that all conditions are satisfied. We

have found the following values for a1, a2, a3, and a4

that intuitively satisfy all conditions for an asymptotically

efficient change of measure based on Theorem 3.1 see

Table 6.

Again, we show by considering all conditions in that

theorem, indeed these possibilities for ak , k = 1, 2, 3, 4,
give an asymptotically efficient change of measure. We

start with Condition 1, and recall that H(x,a4)= 0. Then,

we find the following:

Table 4. Overview of proposed regions for the case r = 4.

Region k

x1 . 0, x2 . 0 1
x1=0, x2 . 0 2
x1 . 0, x2=0 3
x1 ø 0, x2 ø 0 4

Table 5. Possibilities for ak when queue 2 is the bottleneck queue, provided that d1 \ d2 \ d3 \ d4.

ak, 1 ak, 2 k Conditions

x1 . 0, x2 . 0 ½�g1, � g2� �g2 1
x1=0, x2 . 0 �g2 �g2 2
x1 . 0, x2=0 ½�g1,a1, 1� ½0, g1 � g2� 3 le�a3, 1 +m1e

a3, 1�a3, 2 +m2e
a3, 2 4 1

a3, 1 +a3, 2 ø a1, 1 � g2
x1 ø 0, x2 ø 0 0 0 4
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X4
k = 1

rk(x)H(x,ak)

ø

0 if x1 . 0, x2 . 0

�e(d1�d3)d=e log 2m1 +m2ð Þ
�e(d2�d3)d=e log (m1 + 2m2) if x1 . 0, x2 = 0

�e(d1�d2)d=e log 2m1 + lð Þ
�e(d3�d4)d=e log (3m1) if x1 = 0, x2 . 0

8>>>>>><
>>>>>>:

ø � 2emaxf(d2�d3), (d1�d2), (d3�d4)gd=e log (3m1),

where the first step follows by conveniently substituting

the upper and lower bounds on ak from Table 6 and the

final inequality follows since queue 1 is the bottleneck

queue, and thus, m1 4m2. It follows that Condition 1 is

satisfied. For Condition 2, we note that for all x 2 de we

have W d
1 (x)4� d1d, and thus, Condition 2 is satisfied

since W e, d(x)4W d
1 (x). Condition 3 follows similarly as

in Equation (37), with g2 replaced by g1, since queue 1 is

the bottleneck queue. Therefore, the change of measure

for the given possible values of a1, a2, a3, a4, and dk,

k = 1, 2, 3, 4, is asymptotically efficient.

4.4.2. Discussion. From Table 6, we see that for x1 . 0 and

x2 = 0 the change of measure from Parekh and Walrand1

is used, as expected. The difference compared with using

three regions in Section 4.2 is that there is a possibility to

apply a slightly different change of measure for x1 = 0

and x2 . 0. In Figure 10, we show an example when

choosing a1 =(� g1, � g1), a2 =(0, � g1) and

a3 =(� g1, 0). These values for a2 can only occur when

�g1 ø g1 � g2.

Comparing with Figure 9, we see that in the area close

to the x2-axis, we can apply a slightly different change of

measure. Of course, there are several other possibilities.

5. Conclusion

In this paper, we determined sufficient conditions for

subsolution-based changes of measure to give asymptoti-

cally efficient estimators. As a result, for the two-node

M jM j1 tandem queue, we explicitly gave a whole family

(continuum) of changes of measure that all lead to asymp-

totically efficient estimators, and the previously known

changes of measure are just three members of this family.

For d-node tandem queues, it seems likely that we can use

a similar analysis to find a family of changes of measure

that are asymptotically efficient.

For the case d = 2, we like to highlight one particular

change of measure based on the subsolution W e, d(x) in

Equation (6) (via either Equation (3) or Equation (8)), that

uses the following three functions:

W d
1 (x)=� gx1 � gx2 + g � d,

W d
2 (x)=� gx1 + g � 2d,

W d
3 (x)= g � 3d,

where we recall that g = minfg1, g2g. We note that this

is the same subsolution as in the work of Dupuis et al.4 if

queue 2 is the bottleneck queue, while it also works when

Table 6. Possibilities for ak when queue 1 is the bottleneck queue, provided that d1 \ d2 \ d3 \ d4. There is no simple
expression for the maximum value that a2, 1 could possibly attain and it is therefore denoted with *. It should satisfy the conditions
stated (see also Figure 6).

ak, 1 ak, 2 k Conditions

x1 . 0, x2 . 0 �g1 ½�g2, � g1� 1
x1=0, x2 . 0 ½�g1, * � ½�g2,a1, 2� 2 le�a2, 1 +m1e

a2, 1�a2, 2 +m2e
a2, 2 4 1

a2, 1 +a2, 2 ø � g1 +a1, 2

x1 . 0, x2=0 �g1 0 3
x1 ø 0, x2 ø 0 0 0 4

Figure 10. Display of Wd(x) when queue 1 is the bottleneck
queue, a1 =(� g1, � g1), a2 =(0, � g1) and dk = k,
k= 1, 2, 3, 4.
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queue 1 is the bottleneck queue (with g2 replaced by g1).

This matches nicely with the known fact that interchanging

the queues leaves our probability of interest unchanged.

From an implementation point of view with respect to

subsolutions, in general, it makes sense to use as few

regions as possible, i.e., three regions (or d + 1 in the d-

node case). However, when the event of interest is not

total buffer overflow, but, e.g., individual buffer overflow

or simultaneous buffer overflows, it may be more useful to

implement the change of measure from Dupuis and Wang6

that is based on four regions.

Finally, we mention that future work could aim at

investigating whether or not the method generalizes to

more general models, which we expect to be the case. In

the work of Buijsrogge et al.,7 something similar has

already been done for non-Markovian tandem queues, but

one could also think about more general (non-Markovian)

networks, for which we expect similar results to hold.
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