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ABSTRACT
The present work introduced a framework of developing comprehensive extended vehicular trajectory data 
under heterogeneous non-lane-based traffic conditions like the NGSIM datasets in the United States. Due to 
the absence of automation and instrumentation, and even the lack of sensor deployment on roads in 
developing economies like India, it is even more challenging to study driver behavior. A new stitching- 
based algorithm was used for developing the extended trajectory database for three traffic-flow levels on 
a 535-m long section of an urban arterial. The algorithm was used to stitch the trajectory data over the 
segments such that the subject vehicle with continuous trajectory data points over the entire study stretch. 
The developed framework is a novel tool for establishing a trajectory dataset for mixed traffic, it should be of 
interest to researchers in developing and developed countries.

KEYWORDS 
stitching logic; trajectory 
data; NGSIM; mixed traffic

Introduction

Driving behavior on a road section is one of the multifarious phenom-
ena in traffic science. Simultaneously, various performance measures 
such as microscopic traffic characteristics, stability, safety in the traffic 
stream, and other efficacy studies of geometric elements are directly 
associated with driving behavior. Initially, researchers largely 
depended on the mathematical car-following models to model the 
driving behavior (Forbes et al. 1959; Gazis, Herman, and Potts 1959; 
Pipes 1953). Considering human intervention in driving behavior, 
later researchers such as Gipps (1981), Wiedemann (1974), and 
Newell (2002) framed different psychophysical car-following models. 
Besides, numerous other models were conceptualized, and driving 
behavior was modeled. Given the data constraints in sensing the 
drivers’ retorting nature, the performance of the models was limited 
to a specific traffic scenario with the accentuated conceptual 
framework.

In parallel, researchers also performed various experimental trials 
over the test network to quantify driving behavior to capture the 
driving behavioral instincts. From these experiments, the notable out-
come such as the drivers’ reaction time was assessed (Johansson and 
Rumar 1971), which in turn played a massive role in the geometric 
design of highway elements, such as stopping, passing, and decision 
sight distances. Further, the advances in technology and the availability 
of scientifically high-end computational tools, such as simulation soft-
ware and driving simulators, provided numerous opportunities to 
capture driving behavior. Traffic simulation tools allowed collecting 
different behavioral rationalities, such as car-following models (mostly 
psychophysical models), lane-changing logics, and gap-acceptance 
models. These tools were combined in simulation experiments as 
a package for modeling driving behavior and provided a great oppor-
tunity in mimicking the real-field conditions reasonably well, depend-
ing on the credibility of the models used.

Based on the preceding analytical and experimental tools, stu-
dies of many highways aspects are reported, including weaving 
analysis (Hidas 2005), safety performance (Sobhani, Young, and 
Sarvi 2013), transit operations (Toledo et al. 2010), adaptive cruise 
control (Kesting et al. 2008), and traffic emissions (Huang, Bird, 
and Bell 2009). With numerous valuable outcomes, traffic flow 
studies are also taken up to the next level. Again, at the same 
time, the studies resulted in highly customized options in simula-
tion models, along with diversely rich plenteous microscopic field 
inputs that have allowed well-calibrated models or simulation pro-
cess. However, capturing such microscopic interactions among 
vehicles from field conditions require the development of high- 
quality traffic databases that can capture vehicle retorts. This repre-
sented a substantial research gap in this direction that resulted in 
less confidence in simulation models’ results. On the other hand, 
with the advent of using driving simulators, the receptiveness of 
drivers is well-probed for the coded conditions, including the use of 
mobile phones (Haque and Washington 2015), text messaging 
(Drews et al. 2009), mandatory lane changes (Ali, Zheng, and 
Haque 2018; Shirke et al. 2017), hazard perception (Underwood, 
Crundall, and Chapman 2011), and weather conditions 
(Kilpeläinen and Summala 2007). While such studies encapsulated 
the factors related to driving instincts based on laboratory experi-
ments, the practical applicability of the outcomes in assessing real 
field driving behavior is uncertain.

Nonetheless, researchers have perceived the importance of cap-
turing driving behavior from the traffic stream. Different variants of 
probed vehicles (mostly embeds a video camera and GPS) were 
used, and their performance was related to traffic stream character-
istics. Some of the notable studies include traffic calming (Lee et al. 
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2013), travel time studies (Jenelius and Koutsopoulos 2013), per-
formance characterization (Remias et al. 2013), and vehicle pene-
tration (Feng et al. 2010). To a certain extent, using traffic stream 
data, probed-vehicle studies gaged traffic stream delay, platooning 
of vehicles, driving cycle, and following behavior (with multiple 
probed vehicles). However, probed-vehicle studies have not well 
defined the microscopic interactions among vehicles. Given the 
stochastic nature of driving behavior, representing traffic stream 
behavior with a single or a few vehicles can be doubtful. Keeping 
this in view, the study of driving behavior warrants high-quality 
trajectory data, where vehicular positions from the traffic stream 
must be tracked with the smallest possible update interval.

Assessing this research gap, the U.S. Federal Highway 
Administration (FHWA) as part of the next-generation simulation 
(NGSIM) project (FHWA 2007) developed a vehicle trajectory 
dataset using automated image processing tools at different loca-
tions for trap lengths of 400–600 m for different classes of roadway 
facilities. The NGSIM dataset serves as one of the prime sources in 
understating driving behavior under the lane-based homogeneous 
traffic conditions prevailing in the United States. On these lines, 
using micro-level data, numerous studies are reported across dif-
ferent parts of the world, including shock-wave analysis (Lu and 
Skabardonis 2007), traffic-flow assessment (Montanino and Punzo 
2013), lane-changing behavior (Leclercq et al. 2007), traffic- 
oscillation analysis (Chen et al. 2012), simulation studies (Chiu, 
Zhou, and Song 2010; Kumar et al. 2020), and car-following beha-
vior (Hao, Ma, and Xu 2016). Clearly, the development of NGSIM 
data emphasizes the importance of having micro-level high-quality 
vehicle trajectory data for understanding driving behavior in the 
best possible manner.

Unlike the lane-based homogeneous traffic conditions prevailing 
in developed economies, the traffic conditions prevailing in devel-
oping economies, such as India, are heterogeneous. The variety of 
vehicle classes on the roads coupled with ensuing weak lane- 
discipline results in complex interactions among vehicles due to 
the many possible combinations of longitudinal and lateral gaps, 
depending on static and dynamic characteristics. These complex 
interactions are challenging to understand. Hence, high-quality 
vehicle trajectory data are needed for determining simultaneous 
vehicle movements in both longitudinal and lateral directions 
under such mixed (heterogeneous) traffic conditions. Further, 
with the varied vehicle classes present on roads, even the well- 
established image processing tools failed to a large extent in devel-
oping the trajectory data at the desired level of accuracy. As a result, 
very few studies (Bharadwaj et al. 2016a, 2016b; Chunchu, Kalaga, 
and Seethepalli 2010; Kanagaraj et al. 2015; Munigety, Vicraman, 
and Mathew 2014; Raju et al. 2018, 2017) Clearly, the development 
of NGSIM data emphasizes the importance of having micro-level 
high-quality vehicle trajectory data for understanding driving beha-
vior in the best possible manner.

Unlike the lane-based homogeneous traffic conditions prevailing 
in developed economies, the traffic conditions prevailing in devel-
oping economies, such as India, are heterogeneous. The variety of 
vehicle classes on the roads coupled with ensuing weak lane- 
discipline results in complex interactions among vehicles due to 
the many possible combinations of longitudinal and lateral gaps, 
depending on static and dynamic characteristics. These complex 
interactions are challenging to understand. Hence, high-quality 
vehicle trajectory data are needed for determining simultaneous 
vehicle movements in both longitudinal and lateral directions 
under such mixed (heterogeneous) traffic conditions. Further, 

with the varied vehicle classes present on roads, even the well- 
established image processing tools failed to a large extent in devel-
oping the trajectory data at the desired level of accuracy. As a result, 
very few studies (Kanagaraj et al. 2015) that used a length of 225 m. 
Considering this state of progress, it is quite convincing that the 
driving behavior prevailing under heterogeneous traffic conditions 
has not been explored much, unlike under homogeneous traffic 
conditions.

In the present work, an extended vehicle trajectory dataset was 
developed, analogous to the NGSIM dataset. According to NGSIM 
guidelines, a segment length not less than 500 m. This extended 
segment of half a kilometer may include four to five traps of 
150–200 m. Then, the vehicles from different traps should be 
tracked over a space of 500 m for developing high-quality trajectory 
data. The next section describes the study area used for data collec-
tion. The following section presents the proposed methodology, 
including the conceptual framework, the concept of trajectory 
data development, challenges for extended trajectory dataset, tra-
jectory stitching algorithm, smoothing trajectory data, and valida-
tion of the trajectory dataset. Investigation of driving behavior and 
discussion of results is then presented, followed by conclusions.

Study area

In this study, a mid-block section of urban arterial (road section 
web link) in Surat city, India, was selected for data collection. The 
section is about 535-m long and has three lanes in each direction of 
traffic flow (each 3.5-m wide), identified as median-side lane, mid-
dle lane, and shoulder-side lane, with a total width of 10.5 m. The 
study segment was selected so that it was away from any intersec-
tion and free from side-interference-producing activities. Within 
the study section, a pedestrian overpass (10-m wide) is located 
across the arterial at about 450 m from the start of the section 
with a vertical clearance of 7.5 m from the road surface. 
Considering the pedestrian overpass as a vantage point, four wide- 
angle digital cameras were installed and focused at four different 
continuous road segments with trap lengths of 230, 120, 100, and 
75 m, respectively, as shown in Figure 1. This covered an extended 
study section of 535 m for developing a high-quality trajectory 
database using continuously captured data on vehicle movements 
over space and time under varying traffic flow conditions. The 
traffic flow comprised five categories of vehicles: motorized three- 
wheelers (MThW), motorized two-wheelers (MTW), cars, trucks, 
and light commercial vehicles (LCV). Note that the section length is 
more than half a kilometer and, therefore, consistent with the 
quality trajectory datasets recommended by NGSIM.

It can be noted that during of process of videography surveys for 
12 consecutive hours, a wide range of traffic flow is observed over 
the study section from free flow to near capacity flow conditions. 
Macroscopic traffic characteristics, such as stream speed, flow, and 
density, are evaluated; thus, fundamental macroscopic diagrams are 
developed for the study section. Later traffic states are classified 
with the help of fundamental macroscopic diagrams.

Methodology

Conceptual framework

Vehicle trajectory data can be extremely a potent source in analyz-
ing driving behavior at its best level. Further, with the limitation of 
trajectory data sources for heterogeneous traffic conditions, driving 
behavior for such traffic has not been explored comprehensively. 
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Considering this research gap, a framework for establishing 
extended trajectory data for heterogeneous traffic conditions was 
developed. The framework involves three phases (see Figure 2). In 
the first phase, video graphic surveys were carried out to record 
vehicles’ movements over the study section. In the second phase, 
a stitching-based algorithm was developed and used to establish an 
extended trajectory dataset like NGSIM. In the final phase, the 
established dataset was validated, followed by investigating driving 
behavior in terms of lateral amplitude.

Trajectory data development

Vehicle trajectory data are among the high-quality micro-level 
data sources that allow understanding of the interactions among 
vehicles. In the present study, vehicle trajectory data under 
prevailing mixed traffic conditions were developed. Initially, 

the preliminary analysis found that automated trajectory devel-
opment tools are not efficient in trajectory development under 
non-lane-based mixed traffic conditions. Hence, a traffic data 
extractor (Vicraman et al. 2014), a semi-automated tool, was 
used to develop trajectory data. Further, with a semi- 
automated image processing tool, vehicle trajectory data were 
developed for the four individual segments with an update inter-
val of 0.1 s. This was accomplished by tracking individual vehi-
cles for each of the four segments, where the tracked vehicles 
were spotted with green dots. The vehicles were tracked manu-
ally using a computer mouse pointer concerning the vehicle’s 
central position. Following this procedure, trajectory data at 
different flow levels were extracted for 20 min each, classified 
as Flow 1, Flow 2, and Flow 3, as shown in Table 1. A suitable 
and robust algorithm was then developed to stitch the trajectory 
data for each section to obtain extended trajectory data.

Figure 1. Study arterial segments surveyed by cameras and time space plots.

Figure 2. Research methodology adopted in the study.
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Developing extended trajectory dataset

As previously mentioned, using the trajectory data extractor, vehi-
cle trajectory data were developed over the four continuous road 
segments, for 20 min each at three flow levels for a total period of 
60 min. However, to comprehensively evaluate driver behavior, 
a given subject vehicle must be traced in a continuous way over 
all four study sections. In the present case, with four cameras 
recording individually, the subject vehicle’s identity is varied as 
the vehicle moves from one segment to another. As a result, the 
development of an extended trajectory is always articulated as 
a considerable research gap, especially under mixed traffic 
conditions.

To overcome this challenge, a logic is developed to track con-
tinuous vehicular movements. After close inspection of trajectory 
data, it can be noticed that for a given vehicle at a particular time-
stamp, the vehicular longitudinal position, lateral position, and 
category of the vehicle can be recorded by assigning a specific 
unique Id. In the present work, as trajectory data was developed 
individually for each of the four segments, the same vehicle was 
tracked with different Id numbers over different trap lengths. To 
address this issue, trajectory data from two continuous segments 
are selected as primary and secondary segments, in which traffic 
moves from the primary segment to the second segment in one 
direction of traffic flow. When a vehicle moves out from the 

primary segment, it can be projected that it will be detected in 
the second segment with a minor difference in the time stamp, 
having information such as longitudinal position, lateral position, 
and matching vehicle category. However, it might have been 
tracked with a different unique id in the second segment and can 
be well-visualized in Figure 3, in which when the red vehicle 
identity (number) will be changed once it exits the segment-1 to 
the other.

The present study’s trajectory data were developed individu-
ally for each of the four segments; the same vehicle is tracked 
with different identification (ID) numbers over different trap 
lengths. To address this issue, trajectory data from two contin-
uous segments were selected as primary and secondary seg-
ments, in which traffic moves from the primary segment to 
the second segment in one direction of traffic flow. When 
a vehicle moved out from the primary segment, it was detected 
in the second segment based on four specified thresholds related 
to the time stamp, longitudinal position, lateral position, and 
vehicle category. Since a vehicle might have been tracked with 
a different unique ID in the second segment, this ID would be 
replaced with the primary segment’s ID.

The logic of the stitching algorithm is shown in Figure 4. In 
line with the insinuation, the algorithm substitutes vehicle ID 
in the second segment concerning the primary section. The 
algorithm’s logic starts by assembling all trajectory endpoints 

Table 1. Trajectory data analytics over the study section.

Flow condition No. of vehicles tracked Trajectory data duration (min)
Trafficcomposition 

(%) a Traffic flow Volume/capacity

Free flow 591 20 minutes 11.6, 51.1, 35.7, 0.8, 0.7 Flow 1 0.32
Moderate flow 891 20 minutes 12.8, 52.6, 29.5, 2.9, 1.7 Flow 2 0.43
Near capacity 1987 20 minutes 7.8, 57.6, 33.8, 0.22, 0.4 Flow 3 0.91

aTraffic composition: motorized three wheelers, motorized two wheelers, cars, trucks, and LCV.

Figure 3. Trajectory data nature before switching over the two segments.
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(tail points) from the primary section and the starting points 
(head points) from the secondary section. For matching the 
time stamp, longitudinal position, and lateral position, a set of 
thresholds are specified for different sequential runs, as shown 
in Table 2. Initially, the vehicle category was first matched, 
followed by the time difference, then longitudinal position 
difference, and lateral position difference. If a given head and 
tail parts satisfy the prescribed thresholds criteria, the second 
section’s unique ID is replaced with the matched unique ID 
from the primary section. This recurrent procedure is repeated 
for all vehicles’ tails in the primary section with the heads of 
all vehicles in the secondary section. To ensure good accuracy 
in stitching, the formulated logic’s whole process was repeated 
for 10 runs with different progressively increased thresholds. 
This reduced the misclassification of vehicles while stitching 

a trajectory over a section of 535 m. In the present work, the 
vehicles are tracked very prudently over the space. Also, in the 
present work, lot of efforts are taken in deriving the positions 
of the vehicles while traversing from one frame to next frame 
both in lateral as well as longitudinal directions. 
Conventionally adopting the calibrated parameters and apply-
ing them uniformly for stitching empirical trajectory data can 
limit the data accuracy and is highly uncertain (particularly 
due to complexity in movement of vehicles under heteroge-
neous traffic conditions). Concurrently, to resolve this issue, 
the developed stitching algorithm has a good flexibility in 
adopting a different set of progressive thresholds (stage wise) 
over the several runs. In this direction, to understand the 
efficacy of the stitching logic, the section 1 trajectory data is 
divided into halves. In the second half, the Ids of the vehicles 

Figure 4. Algorithm coded in MATLAB for stitching trajectory data.
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are replaced. Later the stitching algorithm is applied to stitch 
the trajectory data. In view of truly continuous nature of the 
trajectory data from the shorter section, the entire trajectory 
data is stitched with in the first run with 100% accuracy.

Smoothing trajectory data and amplifying continuity

It was anticipated that the pedestrian overpass would act as a blind 
spot, where the mounted video cameras would not capture trajec-
tory data under the overpass. As previously mentioned, the 10-m 
wide overpass was located at 400 m from the starting between the 
third and fourth sections point (Figure 1). This can also be noted in 

the time–space plots shown in Figure 5. To address this constraint, 
the longitudinal-position difference threshold was increased by 
15 m and the time-difference threshold by 5 s (based on average 
stream speed) for stitching the data between the third and fourth 
road segments. Further, to maintain continuity in the trajectory 
data over the entire road space, the missing data points were pre-
dicted using a high-order polynomial function that predicts long-
itudinal and lateral positions of individual vehicles as a function of 
time.

Let the longitudinal and lateral positions of individual vehicle at 
time t be represented, respectively, by y(t) and x(t), t= t1, t2, . . ., tn, 
where t1 and tn are time stamps 1 and n, respectively. Then, the 
fitted polynomials took the following form: 

y tð Þ ¼
Xj

k¼0
akðtÞk (1) 

x tð Þ ¼
Xj

k¼0
ak tð Þk (2) 

where kis the integer representing the degree of polynomial func-
tion, ak is the coefficient term, and t= time stamps.

Then, let tm (1 < m < n) be the time stamps where y(tm) and x(tm) 
are not recorded due to the blind spots caused by the pedestrian 
overpass. Using Equations 1 and 2, the longitudinal and lateral 
positions of the missing points, y tk

m
� �

and x tk
m
� �

, are predicted by 
substituting t= tm in Equations 1 and 2.

To eliminate the noise in the trajectory dataset, smoothening 
technique such as moving average filter (Papailias and Thomakos 
2015; Raju et al. 2017) was applied. Based on the stitching logic, an 
extended trajectory data for the entire 535-m section were devel-
oped. The developed time–space continuous plots using the pro-
posed stitching algorithm over the entire study stretch is shown in 
Figure 5. As noted, the presence of vehicles over the longer segment 
even showing their imprints of the road carriageway in the 
extended time–space plots.

Table 2. Thresholds used for stitching trajectory data over consecutive runs.

Runnumber
Vehicle 

category

Time 
diff. less 
than (s)

Longitudinal 
position diff. 
less than (m)

Lateral posi-
tion diff. less 

than (m) Remarks a

1 Should 
match

3 5 0.7 -

2 Should 
match

5 5 0.7 Time +2

3 Should 
match

7.5 5 0.7 Time +2.5

4 Should 
match

7.5 10 0.7 Long +5

5 Should 
match

9 10 0.7 Time +1.5

6 Should 
match

10 15 0.9 Time +1.5, 
long +5 
lat+0.2

7 Should 
match

12 15 1.5 Time +2, 
lat+0.6

8 Should 
match

14 15 2.5 Time +2, 
lat+1

9 Should 
match

14 20 3 Long+5, 
lat+0.5

10 Should 
match

15 20 3.5 Time +1, 
lat+0.5

aTime = time difference, long = longitudinal distance difference, and lat = Lateral 
distance difference.

Figure 5. Time–space plots of the vehicles over the study section.
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Validation

Two types of validation were performed: (1) validating the effec-
tiveness of the stitching algorithm and (2) validating the extended 
trajectory database using field data. For the first validation, the 
algorithm was initially trained with some sample trajectory dataset 
of smaller trap lengths of 150–200 m (by dividing it into two to 
three parts that were initially developed data without any stitching 
logic). The results of this experiment showed an accuracy of about 
95% on the trajectory database developed using the trajectory 
extractor. With the developed stitching logic, the stitching task 
was sequentially performed using the individually developed tra-
jectory data for the four road segments (230, 120, 100, 75 m). It was 
found that the number of vehicles that are stitched accurately over 
the entire section was as follows: 584 out of 706 vehicles for Flow 1, 
764 out of 891 vehicles for Flow 2, and 1621 out of 1987 vehicles for 
Flow 3, indicating an overall accuracy of about 80%. This was 
considered a high level of accuracy, given the non-lane-based vehi-
cle movements of mixed traffic at the micro-level and the diverse 
driving behavior on Indian roads. Note that the developed trajec-
tory data for the 535-m section length can be regarded as the first 
extended vehicle trajectory database for the Indian traffic condition 
context.

Forthe second validation, at the time of video-graphic surveys, 25- 
probe vehicle runs were carried over the study stretch. The predo-
minant vehicle in this study (MTW) was selected as a probe vehicle, 
over which Velocity-Box (V-Box) instrument was mounted. The 
V-Box acted like the global positioning system (GPS) and traced 
the longitudinal position of MTW over the road space with an 
interval of 0.1 s. To test the developed trajectory dataset in the best 
possible manner in line with the literature (Durrani, Lee, and Maoh 
2016), the second derivative of the position with respect to time 
(acceleration of the MTW vehicle) was compared and the probability 
density function established, as shown Figure 6. Further, to check the 
validity of the developed trajectory data, the Wilcoxon rank-sum test 
(Krishnamoorthy 2016) was performed to check the variability 
among the accelerations. From this test, a test statistic of 104 was 
observed, and at a 5% level of significance, the critical value was 
found to be 59, which is less than the critical test statistic 104, 
indicating no significant difference between the data. Based on this 
analysis, it is statistically concluded that the developed extended 

trajectory represents well the true vehicle movements over the road 
space under consideration.

Analysis of driving behavior

Based on the developed extended trajectory data, driving behavior 
in terms of lateral amplitude (Raju, Arkatkar, and Joshi 2020) was 
evaluated. Lateral amplitude is the lateral weaving of vehicles, which 
is the difference in maximum and minimum lateral positions over 
the study section. Further, schematic representation that explains 
the lateral amplitude is shown in Figure 7(a). Mathematically, the 
lateral amplitude is given by 

Lamp ¼ Lmax � Lmin (3) 

Lmax ¼ max L tð Þ½ �t 2 T (4) 

Lmin ¼ min L tð Þ½ �t 2 T (5) 

where
Lamp is the lateral amplitude (m), Lmax is the maximum lateral 

coordinate (m), Lmin is the minimum lateral coordinate (m),  L(t)= 
lateral position of the vehicles from trajectory data at time stamp t, 
and T is the time stamps of the vehicle

Based on the vehicle categories and their sizes, the data were 
segregated, in that MTW as one class, MThW and cars in one class, 
and bus, truck, and LCV in one class. Then, the lateral amplitude 
was evaluated based on vehicle class at all three flow levels. The 
distributions of the lateral amplitude are shown in Figure 7(b). 
Based on the analysis, it is observed that smaller vehicles (MTW) 
tend to have higher lateral amplitude at low flow conditions 
(Flow 1), with a mean of 8 m over the entire section. As traffic 
flow increases, the lateral amplitude decreases, and the distribution 
peak tends to shift. For Flow 2, the peak is about 6 m and in Flow 3 
is about 3 m. The MTW tends to enjoy higher lateral freedom at 
free-flow conditions over the space, decreasing as traffic flow 
increases.

On the other hand, for the MThW-Cars class, at Flows 1 and 2, 
the lateral amplitude distribution was similar with a peak around 
4 m. Considering the lane width of 3.5 m, this indicates that these 
vehicles tend to shift lanes, unlike MTW. Whereas at Flow 3 (near 
capacity), the lateral amplitudes dropped like MTW. Interestingly, 
in heavy vehicles (mainly Trucks and LCV) at all flow conditions, 
the lateral amplitude distributions tend to be similar at all flow 
conditions. This shows that heavy vehicles tend to have much less 
lateral movements over the road space with less lateral amplitude 
due to their sizes and limited lateral maneuverability.

Based on the lateral amplitude analysis, it is concluded that 
smaller vehicles tend to have higher lateral movement than heavy 
vehicles in the traffic stream. Further, due to the constrained move-
ment, the lateral amplitude for the vehicles is reduced with the 
increase in flow levels.

Concluding remarks

Given the dataset constraints, driving behavior for mixed non-lane- 
based traffic conditions has not been much explored in comparison 
to homogeneous traffic conditions. This study was inspired by the 
importance of trajectory NGSIM datasets and the vast array of 
studies that it made possible. Extended trajectory data were devel-
oped in this study using a new stitching-based algorithm that can be 
considered a primary and novel attempt in developing a trajectory 
dataset for heterogeneous conditions. Through this research work, 
the following inferences were made:Figure 6. Probability density function of instant acceleration rates.
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● Given the limitations of automation in the development of 
trajectory data with non-lane-based movements of vehicles 
and the variety of their sizes, the development of such data 
was a constraint in the past. Based on the proposed stitching 
algorithm, an extended trajectory dataset may no longer be 
a constraint in the future for conducting comprehensive stu-
dies on driving behavior. With the meticulousness of trajec-
tory data, the accuracy of the developed stitching algorithm 
can be improved.

● The study also addressed the trajectory data development 
under blind spots. For example, a 10-m under the overpass 
acted as a blind spot for trajectory data development in the 
present case. In this case, using a high-degree polynomial 
equation, the missing points are predicted. Based on this 
logic, even the occlusion effect of vehicles, for example, smal-
ler vehicles following a heavy vehicle, may be shadowed for 
short durations during the surveys. This trajectory data points 
for the smaller vehicles for that short duration may not be 
traced initially. Later, using this polynomial function, the 
missing points were predicted for those vehicles, and the 
accuracy was improved.

● With the limited availability of trajectory data from mixed 
traffic conditions, unlike NGSIM data for homogeneous traf-
fic, the driving behavior under mixed traffic conditions has 
not been explored. Based on the developed stitching algo-
rithm, trajectory data from mixed traffic conditions was 
quickly developed. Further, the developed trajectory datasets 
can help explore different aspects of driving behavior, includ-
ing vehicle following, lateral movement, and traffic safety 

analytics, such as time to collisions and deceleration rate to 
avoid collisions.

● Based on the driving behavior investigation using lateral 
amplitude, it was found that smaller vehicles in the traffic 
stream tend to have greater lateral freedom than heavy vehi-
cles. Further, with an increase in traffic-flow level, the lateral 
freedom has dropped along the road for those vehicles. 
Interestingly, for heavy vehicles, the lateral behavior was the 
same, irrespective of the traffic-flow level.

● Considering the dominance of lateral behavior in mixed traf-
fic, this behavior has been investigated and revealed various 
driving phenomena in the traffic stream. The study demon-
strates comprehensive efforts required to develop an extended 
trajectory dataset for mixed traffic conditions like NGSIM in 
the United States. As such, the proposed methodology and 
dataset should be of interest to researchers in developed and 
developing countries.

● In the present study, the thresholds for stitching were 
increased progressively for stitching the trajectory data. Still, 
in this direction, as a future research scope, more studies are 
required to standardize the stitching thresholds to limit the 
miss-stitches and improve the precision of the stitching 
process.

Study contributions

Given the advancements in technology over the last two decades, 
researchers identified the importance of vehicular trajectory data. 
Currently, traffic flow modeling concepts and traffic 

Figure 7. Lateral amplitude and its probability density function.
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microsimulation highly rely on the trajectory data for the analysis. 
With the data constraints, the driving behavior from heterogeneous 
non-lane-based traffic conditions has not been explored much, 
unlike homogeneous traffic conditions. In the present work, 
extended trajectory data was developed by stitching logic and can 
be considered a primary and a novel attempt to develop trajectory 
data under heterogeneous traffic environments and be further ben-
eficial for studying driving behavior to a greater extent. Besides this, 
the study developed exhaustive comprehensive extended trajectory 
data for Indian traffic conditions. Overall, the study can be con-
sidered as a unique contribution, keeping in view non-lane-based 
heterogeneous (weak-disciplined) and complex traffic flow interac-
tions involving multiple classes of vehicles. In a way forward, the 
methodological contribution from this research work may develop 
a more profound vision related to developing longitudinal and 
lateral driving behavioral models, collision avoidance, high-end 
calibrated traffic simulation models. It can be further contemplated 
that the developed logic of building extended trajectories can be 
very much useful in offering insights from heterogeneous traffic 
context.
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