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Abstract

The innovation output of the photovoltaics (PV) sector has rapidly expanded during recent decades
thanks to the overall increase of investment in sustainable energy production and storage. This research
provides insight into the development of the PV sector during the 2006-2010 period at the global and
cluster level based on bibliometric data sources (patents and scientific publications). Using a novel
cluster identification method, 56 photovoltaic clusters are identified around the world and bibliometric
innovation and knowledge network indicators are extracted for each of the clusters. These indicators
are based on, or adapted from, the existing literature. These indicators make it possible to quantitatively
explore a number of current theories about agglomeration, spatial and relational proximity. The results
and analysis suggest that agglomeration effects and the diversity of patent co-invention and co-
assignment networks have a positive influence on cluster innovation performance. Small clusters
appear to play a more active role in knowledge networks relative to their size; inter-cluster networking
may therefore be a way to overcome the lack of agglomeration advantages of clusters. An in-depth
analysis of six clusters, including their main innovation producers and the inter-cluster knowledge
network, provide further insight into the diversity of individual cluster structures and networks.

1 Introduction

This paper presents a quantitative assessment of the influence of global knowledge networks on the
innovation performance of industry clusters in the photovoltaics (PV) sector. PV is a knowledge
intensive and globally distributed sector that incorporates multiple technological domains, including
electronics, materials science and optics. The PV sector has also received large inflows of public and
private research investment during recent decades as part of a global push towards green growth; PV is
expected to contribute to the reduction of greenhouse gas emissions and the diversification of energy
supply (Breyer, Birkner, Meiss, Goldschmidt, & Riede, 2013). Along with R&D expenditure,
renewable energy investment has also grown rapidly during the past decade, from US$61.82 billion in
2005 to US$328.93 billion in 2015, with solar energy accounting for just under half (US$161.5 billion)
of all renewable energy investment in 2015; in fact, since 2015 global investment in renewable energy
has exceeded investment in conventional energy sources (Bloomberg New Energy Finance, 2016).

It is therefore not surprising that the innovation performance of the PV sector has been the subject of
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significant attention, both in the academic community and among policy makers. Academic research
has generally focused on the PV sector in one country or a small number of countries in the context of
specific topics such as industrial policy, international technology transfer and international competition
(de la Tour, Glachant, & Meniere, 2011; Grau, Huo, & Neuhoff, 2012; Kim & Kim, 2015; Klitkou &
Godoe, 2013; Lo, Wang, & Huang, 2013; Vidican, McElvaney, Samulewicz, & Al-Saleh, 2012; Wu,
2014; Zheng & Kammen, 2014). There are also numerous studies of specific PV industry clusters
which address similar aspects (Dewald & Fromhold-Eisebith, 2015; Klitkou & Coenen, 2013; Luo,
Lovely, & Popp, 2013; West, 2014). And there is a small number of studies which explore the size,
growth and geographic distribution of innovation output in the PV sector based on data sets that cover
the entire world (Breyer et al., 2013; Leydesdorftf, Alkemade, Heimeriks, & Hoekstra, 2014).

This study provides a “glocal” perspective on innovation, by identifying 56 regional PV clusters in 17
countries around the world, and by linking the influence of global knowledge networks and specific
regional circumstances to the innovation performance of individual PV clusters. The positioning of the
research lens at the intersection of global and local factors offers an original contribution to research on
PV industry clusters. The global factors considered in this paper are global knowledge networks:
networks of personal and institutional relationships that enable the transfer of knowledge on a global
scale. Examples include the global research collaboration network (De Prato & Nepelski, 2014) and the
global academic weblinks network (Barnett, Park, Jiang, Tang, & Aguillo, 2014). Other salient
examples include the cross-border knowledge transfers that take place within multinational
corporations (MNCs) which are enabled by MNCs private network of branch laboratories located in
industry clusters worldwide (Castellani, Jimenez, & Zanfei, 2013). However the level of international
participation in research, including the involvement of MNCs, appears to vary significantly between
sectors (Alkemade, Heimeriks, Schoen, Villard, & Laurens, 2015).

While it is clear that international research activities are rapidly growing, especially in terms of their
global distribution, which is aimed at exploiting local comparative advantages, and the growing
importance of global knowledge networks (Audretsch, Lehmann, & Wright, 2014; Locke &
Wellhausen, 2014), there are also indications that internationalization may weaken or limit the
development of internal knowledge networks (Kwon, Park, So, & Leydesdorff, 2012; Van Geenhuizen
& Nijkamp, 2012; Ye, Yu, & Leydesdorff, 2013), and lower the innovation performance of some
knowledge intensive industries (Stek & van Geenhuizen, 2015). The influence of global knowledge
networks on the innovation performance of industry clusters therefore remains unclear, and the PV
sector 1s no exception.

To address this knowledge gap multiple regression analyses are carried out to assess the influence of
internal cluster characteristics and global knowledge networks on the innovation performance of
industry clusters. This multi-scalar approach is based on emerging theories about the role of spatial and
relational proximity in innovation and a multidimensional understanding of knowledge networks as
consisting of different types of relationships with different spatial reach. In this study three types of
global knowledge network are investigated: personal collaboration networks between scientists and
inventors, institutional collaboration networks (Dodgson, 1992), and MNC branch networks. Triple
Helix (university-government-industry relations) networks (Etzkowitz & Leydesdorff, 2000) are only
considered at the cluster level, mainly due to their sparsity at the global level. Other internal cluster
characteristics being included in the model are agglomeration effects (Capello, 2009) and the various
properties of an innovation system, including the presence of scientific and educational institutions, and
entrepreneurship (Autio, Kenney, Mustar, Siegel, & Wright, 2014). Together these cluster
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characteristics and networks provide a broad and differentiated perspective on relational proximity and
cluster innovation performance.

The paper makes a theoretical and methodological contribution to the understanding of innovation
performance in industry clusters. The theoretical contribution consists of exploring how relational
proximity (global networks) influences spatially concentrated knowledge creation in industry clusters,
including the possibility of knowledge flows mainly in one direction, which might raise the innovation
performance of the receiving industry cluster at the expense of the sending cluster. This latter option is
considered to be a possibility for the MNC branch network, which are conceptualized as directed
networks which map information flows from and to a particular network node (industry cluster)
(Wasserman & Faust, 1994).

The paper makes a methodological contribution by using only bibliographic data to extract innovation
indicators, combining spatial analysis and scientometric network analysis approaches. This process
involves the identification of industry clusters, the extraction of cluster innovation input and output
indicators and the construction of multiple inter-cluster knowledge networks from which network
indicators are calculated. These innovation input, output and network indicators are then used in linear
regression models of innovation performance. Because only bibliographic data are used, the method
has the potential to be applied in many other knowledge intensive sectors, especially when other
innovation data is not available, which is often the case for studies that encompass the regional and/or
global scale.

The study is centered on the following research questions:

1. How has the PV sector developed globally in terms of growth in innovation performance,
geographic distribution and the prevalence of knowledge networks during the 2006-2010
period?

Which forms of agglomeration influences PV cluster innovation performance?

Which internal cluster characteristics influence PV cluster innovation performance?

Do the local activities of MNCs influence PV cluster innovation performance?

Which global knowledge network characteristics influence PV cluster innovation performance?

N

These research questions are first discussed using the current literature, which leads to the formulation
of hypotheses (section 2). Next, a research model is proposed (section 3). This is followed by a
description of the data and methodology (section 4), preceding the results and analysis (section 5). The
final section of the paper contains a discussion of the results and a conclusion (section 6).

2 Theory and Hypotheses

This section addresses a number of recent theoretical and empirical advances concerning the role of
global knowledge networks in innovation performance as well as literature about agglomeration effects
and innovation systems. Taken together a “glocal” perspective on cluster innovation performance
emerges, which forms the basis of the research model and hypotheses.

Spatial and relational proximity

Regional approaches to international research interaction have been dominated for years by a rather
one-dimensional approach in which spatial proximity enhances knowledge spillovers (Acs, Audretsch,
& Feldman, 1994; Audretsch & Feldman, 1996). In the course of the past decades, an increased
attention has grown for other types of proximity (Boschma, 2005; Breschi & Lissoni, 2001) and these
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include among others networks of cooperation in knowledge production (relational proximity)
(Asheim & Isaksen, 2002; Bathelt, Malmberg, & Maskell, 2004). Relational proximity may be defined
as the capability of regions or clusters (and their organizations and firms) to learn through cooperation
with other regions or clusters (Camagni & Capello, 2002). Relational proximity is seen as being
facilitated by socio/cultural proximity that enables the absorption of knowledge spillovers from other
regional contexts, through a common set of values and beliefs (Fazio & Lavecchia, 2013). In addition
to these two approaches, an approach which puts an emphasis on synergies between different
proximities, like between spatial and relational proximity has also been developed (Ponds, Van Oort, &
Frenken, 2007; Ponds, van Oort, & Frenken, 2010). Benefits from the two types of proximity will be
discussed in more detail below, followed by an explanation of different types of knowledge and
knowledge relations.

Agglomeration economies

The influence of spatial proximity on innovation performance under the label of agglomeration
economies, has been studied theoretically and empirically for decades, inspired by scholars such as
Marshall and Jacobs (Capello, 2009). Despite a controversy between ideas on specialization-based
advantages (Marshall, 1920) compared to diversity-based advantages (Jacobs, 1970), agglomeration
advantages can be discussed using three main dimensions. The first dimension of theses localized
advantages relates to being spatially close in larger cities or clusters, including lower transport and
transmission costs, proximity to final markets (for firms) or test/launching markets (for innovations), a
larger chance for meeting of two agents, eventually leading to serendipity, and easier exchange of
creative ideas (Morgan, 2004). The second dimension puts an emphasis on productivity increases due
to cost reductions (scale effect) and localized accumulation of production skills. A third dimension
draws attention to synergy and refers to the rise of a set of common values and beliefs which in fact act
as the rationale for the reduction of transaction costs (Williamson, 1981). In so-far the advantages deal
with knowledge, the appropriate concept is localized knowledge spillovers, and invention and
innovative activity at universities, research institutes and companies in cities or clusters benefit from
them (Acs et al., 1994; Anselin, Varga, & Acs, 1997; Audretsch & Feldman, 1996; Autant-Bernard,
2001; Jaffe, 1989). However, various doubt have been cast on the condition of spatial proximity in
productive inter-organizational learning, summarized in the assumption that spatial proximity is neither
a necessary nor a sufficient condition for creative learning and innovation. Rather, it merely facilitates
(Boschma, 2005; D’Este, Guy, & lammarino, 2012; Karlsson, 2010).

Clusters are often defined by spatial proximity, or to be more precise: by “geographic concentrations of
industries related by knowledge, skills, inputs, demand, and/or other linkages” (Delgado, Porter, &
Stern, 2012). However agglomeration effects are also related to the size of the cluster in the regional
economy. Therefore agglomeration is often measured using the location quotient (LQ). Typically LQ is
calculated based on the ratio between regional sectoral employment Esz and total regional employment
E1z, and the ratio between national sectoral employment Esy and total national employment E1y.

LQ=(Esx/Ew)/(Esv/Emw)

A high value for LQ indicates that a cluster is relatively large compared to the regional economy and
may therefore exhibit Marshallian agglomeration advantages, while a low value suggests Jacobian
agglomeration advantages. However both agglomeration advantages can co-exist: large clusters in large
regional economies may benefit from both economies of scale and technological diversity. Hence the
following hypotheses are proposed:
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H1 PV cluster innovation performance correlates positively to the location quotient (LQ).
H2 PV cluster innovation performance correlates positively to total regional innovation activity.

Relational economies

The idea that ‘advantages of spatial proximity’ also work on a distance and in a similar manner
compared to the ones that are localized, has emerged in the literature since the early 2000s and has been
increasingly elaborated ever since (Ertur & Koch, 2011). Thus, Breschi and Lissone (2003) argue that
collaborative networks are channels for knowledge spillovers that are not limited to local environments,
instead, they can span long physical distances (Maggioni, Nosvelli, & Uberti, 2007; Maggioni &
Uberti, 2009; Ponds et al., 2007). According to this line of thinking, the study of regional invention and
innovation has shifted from a focus on close territorial relationships towards an emphasis on
technological collaboration that increasingly occurs between cities or clusters as widely spread
network-based systems through which knowledge circulates and is enriched by complementary needs
and similar values and culture (Cohendet & Amin, 2006). And in the past years, it has been increasingly
recognized that relational proximity between the organizations involved (whether local or global) is key
in productive collaborative learning.

Often such a situation has been viewed as merely positive in enhancing innovation in clusters.
Particularly in high-tech sectors, research collaboration through global networks has been regarded as
crucial for corporate innovative performance, like in the biotechnology industry (Cooke, 2007; Gertler
& Levitte, 2005), the automotive industry (Lorentzen & Gastrow, 2012), the electronics industry (Ernst,
2009) and the aerospace industry (Frenken, 2000). What however might occur, if local firms are
strongly collaborating with Multinational Corporations (MNCs) from elsewhere or if they are
established or acquired by such companies, is that these local firms develop knowledge strategies
depending on their role in the production organization within the (parent) MNC. Particularly, the role of
producing knowledge for the MNC means that MNCs elsewhere learn from their foreign subsidiaries,
which is named ‘reverse’ knowledge transfer in some studies (Ambos, Ambos, & Schlegelmilch, 2006;
Awate, Larsen, & Mudambi, 2014; Castellani et al., 2013; Dunning, 2000; Frost & Zhou, 2005; Frost,
2001). Under these conditions, foreign MNCs extract knowledge from the cluster and if this is based on
exclusivity, the cluster might weaken instead of grow due to global research interaction. An 'excessive'
level of MNC knowledge extraction could therefore lower PV cluster innovation performance.

H3 PV cluster innovation performance correlates positively to the net inflow of knowledge through
the MNC branch network.

Firms within a cluster can leverage their relationships with partners inside and outside of the cluster. In
smaller clusters which lack the local networking advantages of agglomeration economies, it is likely
that knowledge relations with partners outside of the cluster play a more prominent role (T6dtling &
Trippl, 2005). At the same time, the strong relational proximity of a cluster to other clusters may be
strengthening the spatial agglomeration effect, as large clusters tend to be important nodes in national
and global knowledge networks (Bathelt et al., 2004), for example in biotechnology (Huallachdin &
Lee, 2014). The ability to establish “pipelines” (Bathelt et al., 2004) to access specific knowledge in
clusters around the world and take advantage of local competitive advantages (Audretsch et al.,

2014) suggests that network diversity benefits cluster innovation performance, while a high
collaboration intensity with other clusters may signal 'reverse' knowledge transfers (Ambos et al., 2006)
or a lack of local collaboration partners (T6dtling & Trippl, 2005). Smaller clusters may therefore have
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a higher intensity of exchanges with entities in other clusters relative to their size. The following
hypotheses are proposed:

H4 PV cluster innovation performance correlates positively to the diversity of inter-cluster
knowledge relations.

H5 PV cluster innovation performance correlates negatively to the intensity of inter-cluster
knowledge relations.

H6 PV cluster size correlates negatively to the intensity of inter-cluster knowledge relations per
researcher.

However, as the example of knowledge relations within MNCs shows, the type of knowledge and the
type of knowledge relationship also influences a cluster's innovation performance.

Differentiation in knowledge and knowledge relations

Thus, in addition to considering the spatial dimension (local relationship inside the cluster and
relationships between organizations in different clusters), there are significant differences in type of
knowledge and knowledge relations. Most prominent is perhaps the distinction between tacit and
codified knowledge (Gertler, 2003; Simmie, 2003), both of which play an important role in the
innovation process. Because codified knowledge is easier to communicate, it is understandable that
formal research collaboration between clusters has been identified as a factor that enhances regional
innovation performance (Huallachain & Lee, 2014), but this is not evident from formal within-cluster
research collaboration (Fritsch, 2004). Within-cluster collaboration may involve primarily tacit
exchanges of knowledge, which are not captured by formal research collaboration indicators such as
co-invented patents.

In fact research collaboration, which has often been measured through co-authorship only accounts for
a small share of the total knowledge transfer that takes place between institutions, including between
university and industry (Bekkers & Bodas Freitas, 2008; Bukvova, 2010). In addition to this, research
collaboration is sensitive to the power realities between the research partners (Hervas-Oliver & Albors-
Garrigos, 2013; Van Geenhuizen & Nijkamp, 2012), with a stronger partner often exerting more
influence over how the relationship is conducted and how potential benefits are appropriated. Even
within MNCs, larger labs in more prominent clusters tend to have significant autonomy over how and
what kind of research they conduct (Mudambi & Navarra, 2004).

Patterns of knowledge relations may also vary depending on the industry sector (Iammarino &
McCann, 2006; Jensen, Johnson, Lorenz, & Lundvall, 2007), the knowledge resource base and the
social capital of the region (Masciarelli, Laursen, & Prencipe, 2010; Tédtling & Trippl, 2005). Finally
the type of actors involved in the collaboration and the benefits created by spanning mutual boundaries,
such as between universities, government and industry as in the Triple Helix network, could make a
difference in innovation performance (Etzkowitz & Leydesdorff, 2000; Ranga & Etzkowitz, 2011).

In the context of the spatial and relational proximity, the previous discussion suggests that a plurality of
relations and networks co-exist which may influence innovation performance in different ways. It is
therefore highly relevant to also explore the differences between global knowledge networks based on
different network participants.

H7 PV cluster innovation performance correlates positively to inter-cluster patent co-invention.
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H8 PV cluster innovation performance correlates positively to inter-cluster patent co-assignment.
H9 PV cluster innovation performance correlates positively to inter-cluster scientific co-
authorship.

Despite the fact that co-authorship only measures a small part of total knowledge exchanges (Bekkers
& Bodas Freitas, 2008; Bukvova, 2010), hypotheses H7, H8 and HS cover inter-personal patent, inter-
organizational patent and scientific collaboration, which differ significantly in terms of the knowledge
process that give rise to such co-authorship or co-ownership. Co-assignment, which is co-ownership of
intellectual property, usually signals R&D co-investment by two or more organizations or individuals, a
form of “open innovation” (Chesbrough, 2006). If a single organization funds the research, they will
typically receive full ownership of a patent even if other parties are also involved in carrying out the
research (Gautam, Kodama, & Enomoto, 2014). This is in sharp contrast to scientific collaboration,
where the listed authors usually contributed to the research, or were involved in the context of an other
inter-personal relationship (Bukvova, 2010). Similarly, co-invention usually signals involvement of the
listed individuals in the production of the patent, with patent inventors typically being associated with
industry, and scientific publications originating predominantly from authors based at a university.

Local cluster characteristics

Several models for understanding innovation systems have been proposed at the national scale
(Edquist, 1997; Freeman, 1995; Lundvall, 1992; Nelson, 1993), the regional scale (Cooke, 2001;
Porter, 1998; Todtling & Trippl, 2005) and at the sectoral level (Malerba & Orsenigo, 1997; Porter,
1998). All of these models incorporate university, industry and government actors in some form, and
highlight the importance of interaction and co-evolution between the innovation system participants.
The most explicit formulation of this concept is the presence of Triple Helix relations between
academia, business and the public sector, which if well-balanced and well-developed enhance
innovation performance (Etzkowitz & Leydesdorff, 2000). In addition to the Triple Helix there is a
growing literature exploring the influence of factors such as entrepreneurship on innovation
performance (Autio et al., 2014) and the contribution of universities to entrepreneurship and innovation
(Looy et al., 2011; Perkmann et al., 2013). The local presence of strong universities not only
contributes to the local scientific base upon which innovators can draw, it is also an indicator of the
local availability of research talent: top universities attract top talent, and firms establish themselves in
a cluster to gain access to that talent pool (Wuebker, Acs, & Florida, 2010). Therefore it is posited that:

H10 PV cluster innovation performance correlates positively to the size of the local scientific base of
a cluster.

H11 PV cluster innovation performance correlates positively to the share of Triple Helix relations in
total innovation output.

Innovation output in hypothesis H11 refers to patents and scientific publications. However it must be
noted that the importance of the scientific base to innovation performance depends on the technological
base of the industry, as well as on other factors (Asheim & Coenen, 2005; lammarino & McCann,
2006; Mangematin & Errabi, 2012).

While it is difficult to measure entrepreneurship directly, it has been suggested that in the early stages
of a cluster's life cycle, when it is most innovative, many new firms exist. Later on consolidation occurs
and the total number of firms declines, along with innovation performance (Hervas-Oliver & Albors-
Garrigos, 2013). Therefore the number of organizations in a cluster relative to its size could be seen as
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an indicator of entrepreneurship, which also influences innovation performance.

H12 PV cluster innovation performance correlates positively to the number of organizations per
researcher in the cluster.

The above theoretical concepts and the eleven hypotheses are incorporated into the research model.

3 Research model

In this research the influence of local cluster characteristics and global knowledge networks on the
innovation performance of PV industry clusters is evaluated. Therefore innovation performance is the
dependent variable and the various characteristics and knowledge networks are the independent
variables. Clusters are the unit of analysis.

The research model consists of five sub-models of innovation performance: an agglomeration model
(incorporating hypotheses H1 and H2), a model of the presence of MNCs (hypothesis H3), a model of
global knowledge networks (hypotheses H4, H5, H7, H8 and H9), a model of local cluster
characteristics (hypotheses H10, H11 and H12) and a model of agglomeration-network effects
(hypothesis H6). An illustration of the research model and the four sub-models is offered in figure 1.

Agglomeration

- Location quotient (H1)
r - Regional innovation activity (H2)
MNC presence

Agglomeration - MNC-branch knowledge flows (H3)
-network
effects (H6) Global knowledge networks Cluster
- Network diversity (H4) innovation
S - Network intensity (H5) performance

- Patent co-invention (H7)
- Patent co-assignment (H8)
- Scientific collaboration (H9)

Local cluster characteristics
- Scientific base (H10)

- Triple Helix relations (H11)

- Organization size (H12)

Figure 1: Research model

The use of sub-models has an important implication for the linear regression analysis. If all hypotheses
and thus all indicators are incorporated into a single model, then statistically weaker effects are likely to
be excluded from an indicator selection process. This exclusion is problematic given that the indicators
being used are proxies for diverse and complex socioeconomic, geographic and technological
phenomena. Different kinds of indicators may therefore carry different levels of statistical significance.
All sub-models consist of similar kinds of indicators, except for agglomeration-network effects, where
network and agglomeration indicators are combined. A description of the data and indicators follows
below.

4 Data, methodology and indicators
This study considers the 2006-2010 period, which is the most recent 5-year period for which detailed
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bibliometric data is available. In this section the data, sector and cluster identification, indicator
development and the regression model are described.

Data

This study is based exclusively on bibliographic sources (patents and scientific publications) which
enable the observation of changes over longer time periods, while offering global coverage at a local
scale by exploiting the address information contained in the bibliographic sources. These bibliographic
sources form a “paper trail” of innovation activity (Jaffe, Trajtenberg, & Henderson, 1993), the data
from which can be used to carry out regression analysis at the cluster-level.

On the one hand the use of bibliometric data as an innovation indicator has disadvantages, including
variations in patenting propensity between sectors (Kleinknecht, Montfort, & Brouwer, 2002). On the
other hand bibliometric indicators such as patent counts and citation counts seem like valid indicators
in high-technology industries and tend to show close statistical overlap with other innovation indicators
such as R&D inputs and new product announcements, which are also used to measure innovation
performance (Hagedoorn & Cloodt, 2003). A summary of the data sources used in this study is

provided in table 1.

Features Patent grants Scientific publications
Period (this study) 2006-2010 2006-2010
Home address Available None
Institutional address Available Available
Inbound citations data Available Available
Publication lag up to 5 years, sometimes more usually up to a year
Most active institutions Industry University
Patent Statistical Database
Data source (for this study) (PATSTAT) by the European Scopus® by Elsevier

Selection criterion/search term

Documents selected (this study)

Patent Office

Cooperative
Patent Classification (CPC):

YO02E/5... (“PV cells”)
YO02E/6...
(“Thermal PV hybrids”)

11,631

Advanced search:
ABS(“solar cell” OR
“photovoltaic cell”) AND
SUBJAREA(ceng OR chem OR
comp OR eart OR ener OR engi
OR mate OR math OR phys)

9,241

Table 1: Patent grants and scientific publication data as sources for quantitative indicators

For this study, bibliometric data is obtained from two sources. Patent data is obtained from the Spring
2015 edition of the Patent Statistical Database (PATSTAT), which is published every 6 months by the
European Patent Office (EPO) and contains data from all major patent offices. Scientific publications
were downloaded from the Scopus® database, which is maintained by Elsevier, an academic publisher.
All data processingis carried out using R (R Core Team, 2015). Further, rvest (Wickham, 2015) was
used to communicate with the Scopus Application Programming Interface (API). RMySQL (Ooms,
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James, DebRoy, Wickham, & Horner, 2015) was used to communicate with and populate a MySQL
database of bibliographic data.

Supplementing the bibliometric data are three further data sets, which aid in the calculation of specific
indicators, they are:

1. Populated places data, which contains coordinates, place names and population information?,

2. National patent applications and national population data, to calculate the average number of
patent applications per resident?,

3. Patent assignee classification data, to allocate patents to industry, university and
government/non-profit groups, taken from the ECOOM-EUROSTAT-EPO PATSTAT Person
Augmented Table (Du Plessis, Van Looy, Song, & Magerman, 2009; Magerman, Grouwels,
Song, & Van Looy, 2009; Peeters, Song, Callaert, Grouwels, & Van Looy, 2009).

Sector Identification

For the delineation of the technological domain this study uses the new Y02E cooperative patent
classification (CPC) from the United States Patent and Trademark Office (USPTO) and the European
Patent Office (EPO), which contains renewable energy technologies, including a subcategory for
photovoltaics (Y02E/5) and hybrid thermal and photovoltaic technologies (Y02E/6). For scientific
publications the authors are not aware of a similar classification, and therefore rely on the advanced
search option in Scopus®, where all documents (both conference proceedings and journal publications)
which have abstracts that contain the phrases “photovoltaic cell” or “solar cell” and which fall within
the Scopus®-designated subject areas of chemical engineering, chemistry, computers, earth science,
energy, engineering, materials, maths or physics.

Cluster identification

As mentioned earlier, “clusters are geographic concentrations of industries related by knowledge, skills,
inputs, demand, and/or other linkages” (Delgado, Porter, & Stern, 2014). Accordingly, this study uses
two criteria to identify geographic clusters: concentration and connectedness. Both of these measures
are extracted from patent data because the focus of this study is on innovation performance in industry,
which is primarily reflected in patent output (Hagedoorn & Cloodt, 2003; Jaffe et al., 1993).
Concentration refers to the intensity of patent output in geographic space based on the stated place of
residence of inventors. Because patents can be assigned to organizations far away from where the
actual innovation took place, inventor locations are the more reliable geographic indicator of
innovation activity. On the other hand connectedness is based on the extent to which patenting
organizations located within the cluster are connected to other organizations through co-assignment
relationships. For a cluster to be recognized as such, the organizations located within it should be more
connected than those located outside of a cluster. This connectedness criterion ensures that a single but
large laboratory is not accidentally identified as a cluster.

To geographically locate patents (and scientific publications) the (partial) addresses of the affiliated
institutions (including assignees) and addresses of inventors are used. These addresses can be assigned
coordinates using commercial mapping applications such as the Bing Maps API and Google

2 The Populated Places file was used (version 3.0.0), and is available at www.naturalearthdata.com. Natural Earth is an

open-source project supported by universities, non-governmental organizations and the private sector.

National patent application data and population data for the 2006-2010 period is available from the World Bank at
http://data.worldbank.org/indicator/IP.PAT.RESD and http://data.worldbank.org/indicator/SP.POP.TOTL. Because the
World Bank does not have data for Taiwan, the South Korea average is used for Taiwan.
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Geolocation API. This approach has been used previously with a smaller data set (Leydesdorff et al.,
2014; Leydesdorff & Persson, 2010). By using these two different mapping applications, and doing
some manual searches, there is a high success rate of geolocating addresses which is between 94 and
98%.

The conversion of addresses into coordinates allows the locations of inventors to be plotted on a map.
Based on a plot of these inventors, clusters are identified by using the standard “heat map” algorithm,
formally known as kernel density estimation (Parzen, 1962; Rosenblatt, 1956). In this study a standard
quartic (biweight) kernel shape is used with a radius of 30 km. Areas with the 95% highest
concentrations are designated as cluster-cores, and a radius of again 30 km is drawn around these cores
to designate the area of concentration, which is the first step in identifying a cluster. The 30 km radius
is based on the 20 mile radius used in a previous study (Alcacer & Zhao, 2013) and coincides with a
typical daily commuting distance, which is often used as a cluster radius (van Egeraat, Morgenroth,
Kroes, Curran, & Gleeson, 2015). Although commuting distances vary widely, for instance the average
daily commuting distance (going + returning) for cities in the United States varies from 15 km
(Stockton-Lodi, CA) to 41 km (Atlanta-Sandy Springs-Roswell, GA) (Brookings Institution, 2015), 30
km seems like a reasonable average maximum distance at which intensive interaction can easily occur.
The 95% concentration threshold yields the largest number of areas of concentration. Thresholds that
are higher or lower yield fewer areas: lower thresholds tend to create a small number of very large
areas, higher thresholds identify only a small number of small area (i.e. many false negatives).

The second step in the cluster identification process is based on connectedness. The connectedness of
organizations located within the cluster is measured using the weighted degree centrality (Wasserman
& Faust, 1994) of that organization in the patent co-assignment network. The average centrality of all
organizations within an area of concentration can be compared to the average centrality of all
organizations not located inside an area of concentration. Only those areas of concentration with an
average centrality higher than the outside average are identified as clusters. In total 56 clusters are
identified, see table 4 in the appendix. Clusters are named after the largest urban population center
located inside the cluster. To avoid identifying very small “clusters” a minimum threshold of 5 patents
and 5 scientific publications during the 2006-2010 period is imposed. A very small “cluster” could be a
single laboratory, which produces a large number of patents in collaboration with headquarters, and
would therefore be a clear outlier.

Indicators
The indicators used in this study are summarized in table 2 and organized based on the four sub-models
outlined in figure 1. All indicators are calculated at the cluster-level.

Innovation performance is measured as the average number of patent citations received by patents with
inventors from the cluster (PATC). Patent citations are an indicator of patent value (Dernis, Guellec, &
Van Pottelsberghe de la Potterie, 2001; Lanjouw & Schankerman, 2004; OECD, 2009; Squicciarini,
Dernis, & Criscuolo, 2013; Webb, Dernis, Harhoff, & Hoisl, 2005). In case of inventors living in
multiple clusters, the citations are divided based on the ratio of inventors. For example, if a patent has 2
inventors from cluster A and 3 inventors from cluster B, a total of 10 citations are assigned as 4 to
cluster A and 6 to cluster B. The total number of researchers in a cluster (RESR) is measured by
counting the number of unique inventor names registered to a cluster during a given year.

Besides the researcher population, agglomeration is also measured using regional patent output
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(RPAT), which is calculated by adding the population of all population centers located inside of the
cluster boundaries, and multiplying them by the average national patent output per resident (see also:
Data section). To evaluate whether a region exhibits Jacobian (diversity) or Marshallian
(specialization) agglomeration advantages the patenting location quotient (PTLQ) is calculated using
the location quotient formula (see also: section 2) (McCann, 2013), where employment is replaced by
patent output. Thus cluster patent output (CPAT) relative to regional patent output (RPAT) is compared
to total cluster patent output (CPATT, for all 56 clusters) relative to total regional patent output (RPATY).

PTLQ = ( CPAT/ RPAT) / ( CPAT;/ RPAT;)

The indicator for MINC presence is based on the net inflow to a cluster from the inventor to assignee
network. The inventor to assignee network is a directed network, with knowledge flowing from a
branch to headquarters. The network is derived from patents where the inventor and assignee are from
different clusters, the inventor's cluster is presumed to be the “branch” location, the assignee's cluster is
presumed to be the “headquarters”. This approach is not perfect, as firms sometimes file patents under
subsidiaries (i.e. not the headquarters) and sometimes write the headquarters' address as the inventor's
address. However for most patents which fall within this category, perhaps 90% or more, the inventor
and headquarter addresses appear to be correct. The inflow to a cluster is calculated by subtracting the
outbound degree centrality from the inbound degree centrality. The degree centrality is a measure of the
number of connections a cluster has to other clusters; simple degree centrality counts each connection
to a separate cluster as 1, weighted degree centrality counts the total number of connections between
different clusters (Wasserman & Faust, 1994). Degree centrality is calculated using the igraph package
in R (Csardi & Nepusz, 2006). The presence of MNCs in a cluster is therefore measured based on the
simple net inflow (FLWS) and the weighted net inflow per researcher (FLWW). The weighted degree
centrality is calculated per researcher because the total number of connections is likely to be influenced
by cluster size.

Unlike the inventor to assignee network, the other global knowledge networks are undirected: the
relationship between two parties is presumed to be equal. The patent co-invention network is derived
from patents with two or more inventors located in different clusters. The patent co-assignment
network is derived from patents with two or more assignees located in different clusters. And the
scientific co-authorship network is extracted from scientific publications with authors affiliated to
institutions located in two or more clusters. For all three networks the simple degree centrality (INNS,
ASNS, SCNS) and weighted degree centrality per researcher (INNW, ASNW, SCNW) are calculated.

Then concerning local cluster characteristics: the scientific base (SCIB) is measured by calculating the
total number of citations received by scientific publications with authors affiliated to an institution
inside the cluster. The scientific base is measured relative to the size of patent output, so total scientific
publications are divided by total patent output. Scientific publications are an indicator of scientific
quality (Waltman et al., 2012). Adjustments are made for scientific publications from multiple clusters
in the same way as for patent citations.

Theoretical concept Indicator(s) Transfor Statistical summary
-mation (n =56)
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Innovation PATC Patent citations per none min.: 0.037 mean: 0.106
performance researcher max.: 0.263
Agglomeration RESR Researcher population logiy min.: 1.663  mean: 2.540
max.: 3.858
RPAT Regional patent output logiy min.:2.291  mean: 3.856
max.: 5.739
PTLQ Patenting location quotient logiy  min.:-1.109 mean: 0.287
max.: 1.515
MNC presence FLWS Net inventor to assignee none  min.: mean:
knowledge flow, simple max.:
FLWW Net inventor to assignee none  min.: mean:
knowledge flow, weighted max.:
per researcher
Global knowledge INNS Patent co-invention none  min.: 3 mean: 18.7
networks network, simple max.: 62
INNW Patent co-invention logiy min.: -1.619 mean: -0.748
network, weighted per max.: -0.297
researcher
ASNS Patent co-assignment none  min.: 1 mean: 5.2
network, simple max.: 22
ASNW Patent co-assignment logiy  min.: -2.708 mean: -1.675
network, weighted per max.: -0.327
researcher
SCNS Scientific co-authorship none min.: 1 mean: 4.2
network, simple max.: 19
SCNW Scientific co-authorship logiy min.: -2.918 mean: -1.786
network, weighted per max.: -0.155
researcher
Local cluster SCIB Relative scientific base logiy  min.: -0.948 mean: 0.048
characteristics max.: 1.641
THSS Triple Helix share, scientific =~ none  min.: 0.01 mean: 0.108
publications max.: 0.353
THSP Triple Helix share, patents logiy min.:-2.699 mean: -1.530
max.: -0.540
ORGS Average organization size logiy min.: -1.575 mean: -1.025
max.: 0.263

Table 2: Description of model indicators and statistical summaries.

The Triple Helix indicators are calculated as the share of all scientific publications (THSS) or patents
(THSP) which have two or more affiliations or assignees from the following groups: universities,
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government and industry. For patents, institutions are assigned to groups based on the aforementioned
ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table. For scientific publications a simpler
categorization is used, which uses key words such as “company”, “Ltd.” “university”, “college”,
“national institute”, etc. in various languages to categorize institutions into one of the three groups (see
table 5 in the appendix). An inter-cluster Triple Helix network can also be constructed in this way, but
there are too few data points in the present study to conduct such an analysis. This suggests that inter-

cluster Triple Helix relations are rare.

Average organization size (ORGS), a measure of entrepreneurship, is calculated by dividing the
number of unique organizations with an address in the cluster that patent during a particular year, by
the number of researchers.

For the multiple regression analysis to be predictive, all indicators are modified so that they are as close
as possible to a normal distribution, hence the transformations in table 2. To avoid losing data, 0-values
are replaced with 1 for centrality indicators and with 0.01 for other indicators.

Muiltiple linear regression

The multiple regression analysis and related statistical diagnostic tests are carried out in Stata
(StataCorp, 2015). An overview of the statistical diagnostics tests is given in table 6 (appendix). A
description of the regression models and results follows below.

5 Results and analysis
The results and analysis start with a global overview, which leads into the regression analysis. Based on
the insights from the regression analysis, six individual clusters are described in more detail.

PV Patent Output (2006-2010) PV Scientific Publication Qutput (2006-2010)

[ELI
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=
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Region Asia-Pacific EU-15 US and Canada Region Asia-Pacific EU-15 US and Canada

Figure 2: Global PV innovation output, 2006-2010
Global Overview
The innovation output of the PV sector has rapidly grown during the 2006-2010 period, see figure 2.
Both in terms of patent output and scientific publications, growth in the Asia-Pacific region* has been

4 The Asia-Pacific region as defined in this paper consists of: Australia, China, Hong Kong, Japan, Korea, Macao, New
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most rapid, with 2010 marking the first year in which knowledge production in Asia-Pacific overtook
the US & Canada. The EU-15° has been lagging in terms of patent output, but has held the second-
place globally in terms of scientific publication output, while the US & Canada have been lagging in
scientific publication output, but before 2010 were the largest in patent output.

These aggregate global statistics on PV innovation paint a picture of a sector that is in flux, with the

expansion of Asia-Pacific R&D activity, and large imbalances between the three major regions in terms
of patent output and scientific publications.

PV Knowledge Networks (2006-2010) PV Knowledge Networks (2006-2010)

Network simple degree centrality
Metwork weighted degree centrality

Years ‘Years

Network Co-invention Scientific co-authorship Network Co-invention Scientific co-authorship

Figure 3: PV inter-cluster knowledge networks, 2006-2010

While innovation output has been increasing rapidly, see figure 3, the growth of knowledge networks
appears to have been slower. Although both the co-invention and scientific co-authorship networks are
becoming increasingly inter-connected, the total number of connections, as shown by the average
network weighted degree centrality, appears to be slower. Furthermore, the patent co-invention network
is significantly better in terms of diversity and intensity than the scientific co-authorship network. Since
industry accounts mainly for patent output (see also table 7, appendix), and universities and public
research institutions produce most scientific publications, this suggests that industry may be the
primary driver of inter-cluster and global knowledge exchanges. The regression analysis provides
further insight into the role of knowledge networks on innovation performance.

Regression Analysis

As explained in section 3, the linear regression is carried out based on five sub-models: agglomeration,
MNC presence, global knowledge network, local cluster characteristics and agglomeration-network
effects. An overview of the regression analysis results is given in table 3.

The agglomeration sub-model (“Model A”) regression results suggest that cluster size and regional

Zealand, Singapore and Taiwan.
The EU-15 consists of the fifteen “core” countries that joined the European Union in the year 1995 or earlier. They
include France, Germany and the United Kingdom.

5
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innovation output may have a positive influence on innovation performance, and therefore hypotheses
H1 and H2 are supported. However the explanatory power of the model is relatively low (R% 0.10).

The MINC presence sub-model, which is based on inventor to assignee knowledge flows, does not yield
any statistically significant results, for both the simple and weighted indicators (FLWS, FLWW, R*:
0.00). Therefore hypothesis H3 is not supported.

The global knowledge network sub-model is divided into a regression of simple network indicators
(“Model GS”) and weighted network indicators (“Model GW”). The simple indicators are stronger
predictors of innovation performance (R*: 0.24) than the weighted indicators (R*: 0.15).° Although
diversity of the co-inventor and co-assignment networks correlate positively to innovation
performance, diversity in the scientific co-authorship network has a negative correlation. Therefore
hypothesis H4 is only partially supported. Hypothesis H5 too, is only partially supported, with a
negative correlation the intensity of the scientific co-authorship network and innovation performance,
but no statistically significant results for the other weighted network indicators. Thus hypotheses H7
and H8 are partially supported, while hypothesis H9 is rejected.

The rejection of hypothesis H9 is also connected to the rejection of hypotheses H10 and H11. There
appears to be a negative correlation between “scientific” indicators and innovation performance as the
scientific co-authorship network indicators (SCNS, SCNW), the relative scientific base (SCIB) and the
Triple Helix share for patents (THSP) all correlate negatively to innovation performance, both in the
global knowledge networks sub-model (“Model GS” and “Model GW”) and in the local cluster
characteristics sub-model (“Model L”). This is surprising because access to scientific knowledge
should benefit local knowledge-intensive industry, and not lower its innovation performance.

This “anomaly” can be understood if one considers the fact that the relative scientific base (SCIB)
declines with the researcher population of a cluster (RESR); the two indicators have a negative
correlation (Pearson's r: -0.49). This is also true when comparing the weighted scientific co-authorship
network (SCNW, r: -0.57), the Triple Helix share for patents (THSP, r: -0.20) and the simple scientific
co-authorship network (SCNS) divided by the researcher population (r: -0.56) to the researcher
population. So the four “scientific” indicators are essentially negative proxies for cluster size, and are
also closely correlated to each other.

& ASNS is excluded from Model GS because of multicollinearity. If INNS is excluded instead, similar results are obtained,

with a statistically significant positive correlation of ASNS.
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Indicators Model A Model GS Model GW Model L Model AN

RESR -0.337*** (-5.76)
RPAT 0.031%* (2.12)
PTLQ 0.026** (2.40) 0.104* (1.94)

INNS 0.002%** (3.84)

ASNS

SCNS -0.005*** (-2.89)

INNW 0.021 (0.94)
ASNW 0.001 (0.08)
SCNW -0.035%** (-2.97)

SCIB -0.052%** (-4.59)
THSS 0.035 (0.57)
THSP -0.022* (-1.76)
ORGS 0.039 (1.61)

Constant  -0.003 0.092 0.060 0.112 0.077
R 0.10 0.24 0.15 0.38 0.40
DV PATC PATC PATC PATC INNW

Table 3: Multiple linear regression analysis results with coefficients, *, ** and *** denote significance at the
10%, 5% and 1% level, respectively. DV is the dependent variable.

The negative correlation can perhaps be interpreted as a cluster relying too much on universities and
public research institutions as sources of innovation. Universities and public research institutions are
the main actors in the above-mentioned “scientific” indicators, but in terms of innovation performance
they under-deliver: in the PV sector patent citation rates of university and public research institution
(government or non-profit) assigned patents are lower than for industry-held patents (see table 7,
appendix). This does not necessarily mean that university or government-produced patents are inferior,
because firms will often appropriate the best patents if they fund university research (Gautam et al.,
2014). Rather, it suggests that industry R&D is relatively small compared to the scientific resources
available in the cluster, and that small clusters size is due to constraints other than these.

Although not statistically significant (but almost, p-value: 0.88), the average organization size (ORGS)
appears to have a positive influence on innovation performance, thus providing some support for
hypothesis H12.

Finally, the agglomeration-network interaction model (“Model AN”) regression results suggest that
cluster size (RESR) correlates negatively to the weighted inventor network degree centrality (INNW),
confirming hypothesis H6. Furthermore, clusters that account for a relatively large share of regional
patent output, thus having a high patent location quotient (PTLQ), tend to correlate positively to the
network indicator, as presumably the region provides fewer opportunities for collaboration,
necessitating inter-cluster relations.

Summarizing the results: agglomeration effects and network diversity both correlate positively to
innovation performance, with smaller clusters that lack the benefits of agglomeration having more
network connections than larger clusters. Unexpectedly, the relative size of the scientific base and
related indicators are proxies for the smallness of a cluster.
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Cluster Analysis

The relationship between cluster size and connectedness to global knowledge networks, and their
positive influence on innovation performance has important implications for cluster development.
Figure 4 shows the positioning of clusters in terms of size and connectedness, with clusters above the
fitted value line being more connected than their size would suggest, and clusters below the fitted value
line being less connected. Note that the cluster naming is based on the largest population center in the
cluster, which may not always coincide with the center of gravity of innovation activity.

Cluster size and connectedness
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Figure 4: Cluster size and connectedness; for indicator details see table 2.
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To further understand the effects of size and under- and highly-connectedness, six extreme clusters of
different sizes are chosen. Highly-connected clusters San Francisco, Brussels and Busan are compared
to under-connected clusters Taipei, Milan and Tucson. A summary of these six clusters, describing their
size and global share of PV innovation output, as well as major organizations and the inter-cluster
network is provided in table 8 (appendix).

Among the six clusters, the strongest innovation performance is from San Francisco (0.19 citations per
researchers), followed by Tucson (0.13 citations per researcher). The weakest innovation performance
was in Milan (0.049 citations per researcher). The other three clusters have a similar innovation
performance (between 0.082 and 0.089 citations per researcher).

Milan is also unique in the sense that no organization is listed among the top five patenting and the top
five scientific publishing organizations. Most other clusters have an organization that appears in both
lists, including Brussels (Interuniversity Micro-Electronics Center and Katholieke Universiteit
Leuven), San Francsico (Palo Alto Research Center, PARC), Taipei (Taiwan National University) and
Tucson (University of Arizona). Busan is similar to Milan, however public research institutions appear
in both top-five lists. In the case of Milan, no universities appear to be patenting except the Federal
Institute of Technology Lausanne, which is Swiss and thus a partner-institution of Milan-based
organizations. The presence of universities as significant patenting and scientific publishing
organizations may signal their role in commercializing their research. In the case of San Francisco
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PARC is not a university, but it may be fulfilling a similar role as it carries out contract research for
industry and government’.

Brussels, Busan and Taipei all have two or more universities or public research institutions among their
top five patenting organization, in contrast to San Francisco, which has none. This suggests that San
Francisco, Milan and Tucson have more industry-driven R&D activity.

Among the highly-connected clusters, San Francisco and Busan are primarily connected to other
clusters within their respective countries, while Brussels is mainly connected to clusters within Europe.
This suggests that these clusters may be more closely integrated into national/European networks. The
under-connected clusters of Taipei and Tucson have relatively diverse networks with connections to
clusters in Europe, Asia and the USA, although Milan's few connections are only in Europe. Taipei and
Tucson may therefore be active in more niche areas, or in the case of Taipei, lack a national network.

6 Discussion and conclusion

Returning to the research questions, the PV sector has undergone rapid growth during the 2006-2010
period, especially in the Asia-Pacific region. Most significant is the expansion of R&D activity in the
Asia-Pacific region and the imbalances in terms of patenting and scientific output between regions, and
the relative strength of the patent co-invention network compared to the scientific co-authorship
network.

Within the context of these macro-trends, agglomeration effects appear to enhance a cluster's
innovation performance, with larger clusters in regions with high innovation activity performing best —
thus Marshallian (scale) and Jacobian (diversity) agglomeration benefits are both noticeable. Smaller
clusters tend to have more connections outside the cluster, which may be a strategy of overcoming
agglomeration disadvantages.

A secondary agglomeration effect is also visible in the results, which is the negative influence of local
scientific output and related Triple Helix indicators on innovation performance. This result is likely due
to the fact that a relatively large scientific base suggests the presence of a small industry cluster, which
lacks the benefits of agglomeration, and therefore has lower innovation performance.

While the local presence of MNCs appears to have no influence on cluster innovation performance, the
diversity of global knowledge networks, specifically patent co-invention and patent co-assignment
networks, correlate positively to innovation performance.

The six cluster cast studies suggest that several cluster typologies may exist in terms of their network
and cluster institutions. Some clusters appear to be strongly connected in national or regional networks,
while others have a small but diverse number of global connections beyond the nation and region.
Although some of these typologies may be due to the cluster's institutions, they could also be related to
the specific technologies being developed and the role that the clusters play in the global value chain.

Nevertheless, the results demonstrate the viability of using bibliometric indicators to analyze
innovation performance at the global and cluster levels, and extracting a variety of bibliometric and
network indicators. However there are naturally also a number of limitations.

7 See also: http://www.parc.com.
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Limitations of the study

Although this study shows that a bibliometric model of industry clusters and knowledge networks is
feasible, and holds great promise for use in other studies in which bibliometrics is one or the only
consistent source of data, the study also shows the limitations of this methodology. First of all some
knowledge networks, such as the inter-organizational and Triple Helix networks, only appear in very
large clusters and so there is a limitation in the study of smaller clusters.

Secondly, this study has only addressed the PV sector. Although a simple and transparent method for
cluster identification, the use of bilbiometrics means that only one dimension of the sector, and one
dimension of innovation, is being measured. It is therefore likely that the method is blind to clusters
which may have significance in terms of production or production-related R&D but not in terms of
more general R&D that is eventually published as patents or peer-reviewed scientific publications.
Since only the PV sector was explored, different sectors may display significantly different
agglomeration and network effects.

Thirdly, many of the indicators, and the way in which they are used, are novel and may therefore be
further improved and validated. For example, innovation performance could be measured by including
scientific publications, or more narrowly by using only industry patents. The network analysis is also
quite simple, and a more detailed structural analysis of the networks that are part of the present data set
could yield additional insights, such as the correlation between different networks and the changing
position of clusters within them.
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Appendix

Due to length constraints, the paper containing the full appendix is available at:

http:/stek.in/research/photovoltaics_druid.pdf
Alternatively, please send an e-mail p.e.stek@tudelft.nl to receive a copy.

Table 4: Cluster indicators, raw (not transformed)

Table 5: Triple Helix group identification keywords

Table 6: Multiple linear regression diagnostics test outcomes (n = 56)
Table 7: Citation rates per assignee group, includes co-assigned patents
Table 8: Selected cluster profiles
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