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Abstract
The rapid and precise detection of diseases and plant disorders is the basis for the adequate and timely design of management 
strategies. Currently, there are several non-destructive alternatives that allow early detection, highlighting the use of spectral 
cameras attached to unmanned aerial vehicles (UAVs). The objective of this research was to evaluate the use of multispectral 
cameras on UAVs to discriminate vascular wilt caused by Verticillium spp., (VW), waterlogging stress (WL), and an unknown 
alteration (UA) in commercial potato (Solanum tuberosum) variety “Diacol Capiro” crops. Plots were monitored during 
the crop cycle, performing the visual characterization of the diseases and disorders present. Five spectral band images were 
acquired using a MicaSense RedEdge spectral camera attached to a Map-T680 hexacopter drone to extract the bands and 
calculate the vegetation indices that were calibrated and evaluated to determine their ability to discriminate between diseased 
and healthy plants based on a generalized linear model (GLM) and Kappa index. Additionally, the supervised random forest 
classification method was implemented, optimized, and evaluated using the accuracy, area under receiver operating charac-
teristic curve (ROC-AUC), kappa index, and inference error based on k-fold cross-validation. After algorithms optimization 
our results show a classifier accuracy, kappa and ROC-AUC values to VW, WL and UA between 73.5–82.5%, 0.56–0.71, 
0.97–0.98, and 35 37.5–51.9%, 0.07–0.06, and 0.88–0.94 for plots 1 and 2, respectively. This study reports an approach to 
the use of multispectral cameras attached to UAVs as a tool with potential for the detection of diseases and physiological 
disorders in commercial potato crops.

Keywords  Vegetation indices · Model calibration · Early detection · Data science

Introduction

The potato (Solanum tuberosum L.) crop is affected by 
multiple phytosanitary problems that may vary accord-
ing to the biogeographic regions where it is planted. Late 
blight (LB) caused by Phytophthora infestans (Mont.) de 
Bary has been reported as the most destructive disease with 
the greatest potential for damage (Fry et al. 1993; Ristaino 
2002). However, vascular wilt (VW) or early dying caused 

by Verticillium is a phytosanitary problem of increasing 
importance in this crop, with Verticillium dahliae Kleb. 
and Verticillium albo-atrum Reinke & Berthold as the main 
reported species (Krikun and Orion 1979; Johnson and Dung 
2010; Wheeler and Johnson 2016).

In Colombia, LB is considered the most important 
disease (Silva et  al. 2010; Céspedes et  al. 2013); 
Verticillium has been reported in the departments of 
Antioquia, Boyacá, Nariño, Norte de Santander, and 
Cundinamarca (Nieto 1988; Buriticá-Cespedes 1999), with 
important economic and epidemiological implications in 
the last few years (Ramirez-Gil et al. 2019a). Additionally, 
an alteration has been observed in recent crop cycles. 
This alteration differs from the disorders or diseases 
previously reported in potato crops (Stevenson et al. 2002; 
Torres 2002), because of its symptoms and development 
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in affected plants. In this study, it is called unknown 
alteration (UA) and has negatively affected crop yields 
and production quality (Ramirez-Gil et al. 2019b). Mayor 
symptoms of UA are associated with a reduction of the 
stem rigidity, yellowing of the lower leaves in late stages, 
and early plant maturity (Ramirez-Gil et al. 2019b). Based 
on the literature reviewed and field and laboratory tests 
carried out by our research group, it has not been possible 
to relate UA to a specific causal agent or to an abiotic 
factor; for these reasons, further studies are needed to 
clarify the etiology of these symptoms. This problem has 
been observed in production areas in the municipalities 
of Madrid and Mosquera in Cundinamarca, Guatavita 
in Boyacá, and Cajamarca in the department of Tolima 
(Ramirez-Gil et al. 2019b). On the other hand, the water 
excess or waterlogging (WL) in the soil has been reported 
as a consequence of the ENSO phenomena (especially La 
Niña). Water stress has recently increased in the country, 
affecting different crops and causing plant disorders 
(Ramírez-Gil and Morales-Osorio 2018).

The basis for proper plant disease management must 
start from early detection in the crop (Miller et al. 2009). 
The development of biotic or abiotic stress conditions 
triggers physiological alterations or biochemical changes 
in plants that can be detected by different types of sensors 
(Oerke et al. 2006; Fang and Ramasamy 2015; Mahlein 
et  al. 2017; Lowe et  al. 2017). In recent years, early 
detection techniques for disease-causing agents have 
been introduced through the use of sensors (Mahlein 
et al. 2018), highlighting the utilization of hyperspectral 
cameras (Martinelli et  al. 2015; Fang and Ramasamy 
2015; Mahlein et al. 2017, 2018). The use of these devices 
has been reported in potato production systems for the 
detection of potato Y virus (PYV) (Couture et al. 2018; 
Polder et al. 2019) and late blight (Duarte-Carvajalino 
et al. 2018). Additionally multispectral cameras on-board 
unmanned aerial vehicles (UAVs) and multiple types 
of data measurement and analysis techniques have 
introduced a novel approach for the rapid and accurate 
assessment of crop disease level. In potato, incidence 
and early severity levels of diseases such as late blight 
(Franceschini et al. 2019) and blackleg (Pectobacterium 
atrosepticum) (Gibson-Poole et  al. 2017) have been 
measured using this novel approach.

The identification and diagnosis of plant diseases 
are especially important in climate change scenarios, 
in particular for areas with high climatic variability 
such as Colombia (Ramírez-Gil and Morales-Osorio 

2018), and production systems extremely sensitive 
to different kinds of abiotic and biotic factors like 
the potato crop. Therefore, early detection and timely 
management are decisive in reducing the losses that 
these factors may cause. The objective of this study 
was to evaluate the use of multispectral cameras 
attached to UAVs and image processing using a 
machine learning tool for the discr imination of 
diseases and plant disorders (VW, WL, and UA) in 
commercial potato crops.

Materials and methods

Location, sampling, characterization of diseases, 
and description of physiological disorders present 
in the potato crop

We evaluated two commercial potato plots of the variety 
“Diacol Capiro” and located in the municipality of 
Subachoque (Cundinamarca, Colombia): Plot 1 (4.9685931, 
-74.1545059, 2754  m) of 8  ha with high topographic 
variation, so the field was divided into three areas depending 
on the slope (in percentage) ((i) < 5%, (ii) 5.1–10%, and 
(iii) > 10%, with 45, 30 and 25% of area, respectively) and 
Plot 2 (4.959364175, -74.16033033, 2732 m) of 10 ha with 
little topographic variation (< 5% slope).

Based on previous temporal dynamics analysis in the 
appearing of symptoms (incubation period reported) of 
VW disease (> 70 days after sowing (das)) and UA disorder 
(> 60 das) and when the level of incidence and disease 
severity were high enough for visual discrimination, 
plots 1 and 2 were monitored at 90–120 and 75–105 das, 
respectively. The number sample points are calculated 
according to the maximum variance formula (Eq.  1) 
(Cochran 1977). A sampling unit of 2 m2 (approximately 
5 plants) was considered, with 90 (plot 1) and 106 (plot 
2) points distributed in the space using a proportional 
stratified sampling (% of area-slope category) for plot 1 
and simple random sampling for plot 2. The number of 
samples was determined as a relationship between the 
flexibility under field sampling for decision making, the 
maximum margin of error (20%), and the confidence level 
(80%) allowed to achieve population inference.

In each plot, presence-absence evaluations to calculate 
the disease incidence (number of symptomatic plants over 
the total evaluated plants) were conducted. Additionally, 
for all alterations and diseases under study, visual severity 
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scoring using a four level scale was evaluated at each point 
(no disease = 0; slight disease = 1 (leaf area affected between 
0.1 and 20%); moderate disease = 2 (leaf area affected 
between 20.1 and 50%); and high disease level = 3 (leaf 
area affected > 50.1%)), and their respective coordinates 
were collected.

where n is the sample size; N is the population size; e is 
the error margin (20%); z is the value based on confidence 
level (80% = 1.28); and P is the probability (0.5%).

Before recording the incidence, severity, and spatial loca-
tion of the points to be sampled, a pre-sampling was carried 
out to describe the symptoms associated with each case and 
their importance. This pre-sampling was based on a field-
farms monitoring approach following a random sampling with 
a “n” of 80 and 75 points for plots 1 and 2, respectively. VW, 
LB, WL, and UA were selected according to their incidence 
in the plots under study. Additionally, samples of symptomatic 
and asymptomatic plants were collected in each plot. The 
samples were taken to the Plant Clinic of the Faculty of Agri-
cultural Sciences at the Universidad Nacional de Colombia for 
processing and identification of the associated causal agents.

In the laboratory, pathogens were isolated from the base of 
stems, roots, and leaves of the plants to be analyzed. For this 
purpose, plant tissue was cut and disinfected with 70% ethanol 
for 30 s and 2% NaOCl for 30 s followed by two washes in sterile 
distilled water and cultured in Petri dishes with Potato Dextrose 
Agar (PDA) (Oxoid®) medium acidified to 0.1% (v/v) with 85% 
lactic acid. Petri dishes were incubated in the dark at 25 °C for 
10 days, and the frequency of fungal and bacterial colonies was 
recorded. The isolated fungi were morphologically identified at 
the genus level following a taxonomic key (Barnett and Hunter 
1972; Seifert et al. 2011), and the same procedure was carried out 
for oomycete species (Erwin and Ribeiro 1996).

(1)n =
Z
2
P(1 − P)∕e2

1 + (Z2P(1 − P)∕e2N
,

Multispectral image capture using a camera 
attached to a UAV

Based on the monitoring in previous sampling procedures, stable 
environmental parameters for the appropriate flight and spec-
tral capture planning (e.g., flight altitude, image overlap, flying 
direction, flying speed, solar elevation, cloudiness, and wind 
speed) (Tu et al. 2020) and availability of the equipment were 
adjusted to the second sampling (120 and 105 das for plots 1 and 
2, respectively).

Multispectral data was captured in each plot using the 
MicaSense RedEdge multispectral sensor (MicaSense®), 
with a DLS 2 type light sensor (Downwelling Light Sensor, 
MicaSense®) for correcting mid-flight lighting changes, ground 
control points (GCP) for geometric correction, and a reflectance 
panel (MicaSense®) for radiometric correction of images. The 
sensor was attached to a hexacopter-type UAV Map-T680 fol-
lowing a flight plan 120 m above the ground, with an 80% over-
lap between images and a 60% overlap between flight lines. 
Images were captured with a pixel size of 8 cm in the spectral 
bands blue (475-nm center, 20-nm bandwidth), green (560-nm 
center, 20-nm bandwidth), red (668-nm center, 10-nm band-
width), red edge (717-nm center, 10-nm bandwidth), and near 
infrared (NIR) (840-nm center, 40-nm bandwidth). Agisoft 
Metashape 1.6.1 (Agisoft™) was used for the post-processing 
of data and the generation of orthophotomosaics.

Evaluation of diseases and disorders discrimination 
capacity using vegetation indices

Different vegetation indices reported for the detection of 
plant alterations were calculated from the processed ortho-
photomosaics (Table 1). These products were then projected 
to the evaluated plots. This process was carried out using the 
LSRS package for R (Sarparast 2018).

Table 1   Vegetation indices used for disease plants detection and the mathematical expressions to calculate them

a Soil brightness correction factor = 0.5. bMSAVI uses the following formula to calculate L, L = 1 – 2 *s *(R
NIR-R

RED) *(R
NIR- s*R

RED)/ (R
NIR-

R
RED), where s is the slope of the soil line from a plot of red versus near infrared brightness values. cG constant = 2.5; C atmospheric resistance 

coefficients (C1 = 2.4); L to adjust the background = 1

Name Estimation Reference

Normalized difference vegetation index (NDVI) R
NIR-R

RED/RNIR + RRED Naidu et al. (2009)
Soil-adjusted vegetation index (SAVI) (R

NIR-R
RED) (1 + L)/RNIR + RRED + La Yang et al. (2007)

Modified soil-adjusted vegetation index (MSAVI) (R
NIR-R

RED) (1 + L)/RNIR + RRED + Lb Qi et al. (1994)
Enhanced vegetation index (EVI) G* ((R

NIR-R
RED)/(RNIR + C1*R

RED- + 1))c Mondal (2011)
Green normalized difference vegetation index (GNDVI) R

GREEN-R
RED/RGREEN + RRED Yang et al. (2007)

Visible atmospherically resistance index (VARI) R
GREEN-R

RED/RGREEN + RRED- RBLUE Naidu et al. (2009)
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The values for each index were extracted at each sam-
pling point to assess whether the vegetation indices had dis-
criminative capacity between diseased and healthy plants. 
We opted for a generalized linear model (GLM) using the 
logarithm of the mean for the link function in the log-linear 
model. This model was selected to evaluate the discrimi-
native ability considering that the response variable was 
adjusted to a Poisson distribution (healthy and diseased 
plants) and the predictive variables were discretized vegeta-
tion indices. The potential of each vegetation index for the 
predictive capacity of the model was evaluated by the root 
mean square error of prediction (RMSEP) criterion using 
leave one out cross-validation. As a complement, we used 
the kappa statistic or coefficient to determine hard classifica-
tion outputs (healthy vs. diseased), defining four discrimina-
tion categories based on their value: (i) perfect (1); (ii) good 
(0.6–0.99); (iii) moderate (0.3–0.59), and (iv) poor (≤ 0.3) 
(Viera and Garrett 2005). This procedure was executed in R 
(R Development Core Team 2020).

Supervised classification of images

We used the random forest (RF) classifier for the classification 
process (Pal, 2005). The diseases and physiological disorders 
(VW, WL, and UA), healthy plants (HP), water (W), and soil 
(S) were used as input classes. The spectral bands obtained by 
the multispectral camera as well as the calculated vegetation 
indices reported in Table 1 were used as the predictors. For this 
analysis, LB was discarded due to its low incidence and sever-
ity in the studied plots (incidence and severity less than 5 and 
1%, respectively). A number of classes evaluated under field 
conditions in each plot (1 and 2) were as follows: VW, 25–15; 
WL, 15–15; UA, 12–20; HP, 45–50; W, 10–10; S, 22–20.

Different variations of input data and parameters were 
performed within the RF algorithm, by combining variables 
(bands and bands + indices) and classes: all (VW, WL, UA, 
HP, W, and S) and reduced (VW, UA, HP, W, and S). The 
optimization of the RF algorithm as a balance between the 
robustness, stabilization of the error rate, and computational 
performance was carried out through a multistep process 
(Henao-Rojas et al. 2021): (i) evaluating the number of trees 
(set of combinations from 1 to 1000), (ii) number and depth 
of nodes (1 to 4000), and (iii) the hyperparameter alpha (0 
to 20). In addition, the type of assembly model used in the 
RF algorithm was bootstrap aggregation technique (Bagging) 
(Breiman 1996). The arrays data were randomly divided into 
two data sets: (i) training (75%) and (ii) testing (25%).

Classification on training/validation date set were 
evaluated following multistep criteria: (i) multiclass-
AUC using area under receiver operating characteristic 
curve (ROC-AUC), related as a measure of the quality 
of the classification (Cortes and Mohri 2003); (ii) the 
Kappa index; (iii) inference error using stratified tenfold 
cross-validation (1—inference error = accuracy); and 
(iv) significance (p < 0.05). In addition to the training 
process, the confusion matrix (Bekkar et  al. 2013; 
Mueller and Guido 2016) was calculated to evaluate the 
quality of the classifier, where rows corresponded to the 
true classes and columns to the predicted classes. From 
each matrix, the overall accuracy (OA) was calculated 
using the ratio of the total number of correct samples 
over the total number of samples (Hasmadi et al. 2009). 
The classes evaluated were imbalanced, so we changed 
the prediction rule to other than majority votes (Liaw and 
Wiener 2002) incorporating artificial class weights into 
the RF classifier.

The supervised classification and evaluation of the 
results were carried out by building our code in the free 
software R, using the following packages: caret (Kuhn 
et  al. 2020) to create folds, fit training, training, and 
confusion matrix; car (Fox et al. 2020) to test predic-
tion; pROC (Robin et al. 2021) to make the ROC-AUC 
curves; random forest (Liaw and Wiener 2018) to run the 
model; randomForestExplainer (Paluszynska et al. 2019) 
to optimize the RF model; and raster (Hijman 2016) to 
manipulate spatial data.

Results

Description of the most important diseases 
and physiological disorders in the evaluated plots

The UA showed the highest incidence (> 30%) and 
severity (> 10% of leaf area affected) in both plots. 
Symptoms at early stages were associated with expo-
sure of the abaxial surface of leaves, followed by tor-
sion of leaf petioles and plant stems. Subsequently, 
chlorosis, death of leaves and branches, and wilted 
stems on the ground were observed (Fig. 1 A, B, and 
C). The affected plants did not show visible vascular 
damage in stems or tubers. At the laboratory, it was 
not possible to consistently isolate any microorganism 
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that could be related to this alteration from the evalu-
ated samples.

The second most important disease (VW) showed 
an incidence greater than 25.6–10.5% and severity val-
ues > 10 and < 10% of leaf area affected, in plots 1 and 
2, respectively. Symptoms appeared in plants over 30 das 
and were associated with a hyponastic response, marginal 
necrosis, interveinal chlorotic areas that advanced towards 
the main rib, loss of turgidity in stems, unilateral death 
of branches, and brown coloration in vascular bundles 
that was evident in cross-sections of the stems (Fig. 1 D, 

E, and F). From these tissues, it was possible to isolate 
white, slow-growing cottony colonies in the laboratory. 
Microscopically, the isolated fungus showed thin, septate, 
hyaline mycelium that formed single-celled conidia on 
long conidiophores in whorls and microsclerotia on the 
hyphae at the edge of the colony, which corresponded to 
a fungus of the genus Verticillium (Barnett and Hunter 
1972; Seifert et al. 2011).

The third disorder in importance (WL) showed inci-
dence < 10% and severity < 10% of leaf area affected espe-
cially in plot 1. The observed symptoms corresponded to 

Fig. 1   Diseases and physiologi-
cal disorders identified in potato 
plants of the variety Diacol 
Capiro in commercial plots of 
the municipality of Subachoque, 
Cundinamarca, Colombia. A–C 
UA, unknown alteration. D,E 
VW, Verticillium Wilt. G,H WL 
waterlogging disorder. I: late 
blight caused by Phytophthora 
infestans 
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Table 3   Optimized parameters and statistics metrics of random forest machine learning method to ability for discrimination of classes of dis-
eases and physiological disorders in potato plants of the variety Diacol Capiro

1 Number of variables available for splitting at each tree node (square root of the number of predictor variables). 2Inference error using stratified 
tenfold cross-validation (1—inference error = accuracy). 3Determined parameter using area under receiver operating characteristic (ROC) curve 
(AUC). 4Significance codes: ***0001; **0.01; *0.05. aTraining data set. bTesting data set

Plot Model Optimized parameters in the random forest 
algorithm

Statistical metrics in training/testing data set

mtry1 Mean 
number of 
nodes

Mean 
minimum 
depth

Hyperpa-
rameter 
alpha

Accuracy2 Kappa Multiclass-
AUC​3

p Value4

1 Bands—all class 5 728 1.79 4 0.82a 0.92b 0.71a 0.90b 0.97a 0.98b ***a ***b

Bands + index—all class 6 320.4 2.72 5 0.73 0.92 0.56 0.90 0.96 0.98 *** ***
Bands + index—selected class 11 362.7 2.33 6 0.79 0.90 0.62 0.87 0.97 0.97 *** ***

2 Bands—all class 3 1116.2 1.97 3 0.37 0.72 0.04 0.65 0.92 0.94 * **
Bands + index—all class 11 425.1 3.27 4 0.25 0.72 0.06 0.65 0.95 0.96 * **
Bands + index—selected class 11 480.5 2.90 5 0.35 0.66 0.07 0.53 0.87 0.88 * **

Table 2   Discrimination 
capacity of potato diseases and 
physiological disorders using 
vegetation indices

NDVI normalized difference vegetation index, SAVI soil-adjusted vegetation index, MSAVI modified soil-
adjusted vegetation index, EVI2 enhanced vegetation index, GNDVI green normalized difference vegeta-
tion index, VARI visible atmospherically resistance index, GLM generalized lineal model. aSignificance 0, 
0.001, 0.01, and 0 .05. bRMSEP root mean square error of prediction. cKappa index. dDescriptive classifier 
according to kappa index. UA unknown alteration, VW Verticillium wilt, LB late blight caused by Phytoph-
thora infestans, WL waterlogging disorder

Vegetation indices Disease/ disorder Statistical test

GLM Kappa index

NDVI UA 0.002a 12.4b 0.65c Goodd

VW 0.045 15.8 0.42 Moderate
LB 0.8 92.3 0.1 Poor
WL 0.055 132.4 0.2 Poor

SAVI UA 0.045 35.4 0.42 Moderate
VW 0.049 63.4 0.31 Moderate
LB 0.9 122.4 0.09 Poor
WL 0.065 172.3 0.12 Poor

MSAVI UA 0.047 40.3 0.45 Moderate
VW 0.048 58.9 0.39 Moderate
LB 0.89 104.8 0.1 Poor
WL 0.060 95.4 0.17 Poor

EVI UA 0.039 25.3 0.42 Moderate
VW 0.04 50.3 0.31 Moderate
LB 0.75 112.4 0.09 Poor
WL 0.072 165.7 0.09 Poor

GNDVI UA 0.001 10.3 0.7 Good
VW 0.0035 12.3 0.6 Good
LB 0.66 105.8 0.18 Poor
WL 0.065 132.4 0.19 Poor

VARI UA 0.038 42.8 0.5 Moderate
VW 0.045 68.3 0.42 Moderate
LB 0.93 155.2 0.007 Poor
WL 0.059 97.3 0.11 Poor
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plants with little shoot and root development, with general-
ized chlorosis that ended up with the death of the plant at 
advanced stages (Fig. 1 G and H). These symptoms were 
associated with waterlogged areas in the plots. No fungal 
colonies or plant pathogenic bacteria were isolated from 
plants that displayed these alterations.

`The fourth disease (LB), with an incidence and a 
leaf area affected less than 5 and 1% respectively in 
both plots, was associated with irregular necrotic spots 
on leaves, which initially showed an oily appearance 
and then invaded a significant portion of the tissue. The 
microscopic characteristics of the pathogen isolated 
from infected plant tissue corresponded to P. infestans 
(Erwin and Ribeiro 1996) (Fig. 1H).

Ability to discriminate potato diseases 
and physiological disorders using vegetation 
indices

It was found at p value and RMSEP statistics that 
all the evaluated indices could discriminate diseased 
plants with over 10% of the leaf area affected (sever-
ity) associated with UA and VW, but not for LB and 
WL, for which the affected area was lower than 10%. 
This result was confirmed by the kappa index, where 
qualitative classification yielded parameters of good 
and moderate discrimination capacity of plants affected 
by UA and VW (Table 2). Within each index, there 
were differences in their ability to discriminate healthy 

Fig. 2   Importance of variables on the discrimination of classes of diseases and physiological disorders in potato plants of the variety Diacol 
Capiro using the random forest algorithm. UA: unknown alteration
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from diseased plants with UA and VW according to 
the RMSEP statistics. GNDVI was found as the index 
with the highest predictive power, followed by indices 
NDVI, SAVI, EVI, MSAVI, and VARI, respectively 
(Table 2).

Detection of potato diseases and physiological 
disorders using machine learning and remote 
sensing

Table 3 shows the results of the ability of RF to prioritize 
the importance of variables (bands and indices) and their 
discriminating ability of class associated with different 
physiopathologies after an internal optimization 
process (number of trees, number and depth of nodes, 
hyperparameter alpha and signif icance).  It  was 
determined that the RF had an outstanding performance 
for this research based on the test statistics evaluated 
(Table 3).

The weight of the predictive variables changed regarding 
each class and plot evaluated. In plot 1, it was found that for 
VW, WL, and HP, the green and NIR bands and the NDVI 
index provide the greatest importance in the classifier. For 
UA, it was found that the green and blue bands, besides the 
NDVI and GNDVI indices, have relevance in the differen-
tiation of this class. The predictive variables in plot 2 did 
not show contrasting values between them regarding their 
importance (Fig. 2).

Concerning the prediction capacity, it was found that 
the evaluated alterations showed AUC values close to 1, 
indicating good sensitivity and specificity of the model. 
It was possible to predict classes S, VW, HP, W, and UA 
with higher values in plot 1 compared to plot 2. This 
may be highly related to a larger leaf area affected (over 
30%) in plot 1. It was also found that the combination of 
bands and indices and, to a greater extent, the reduction 
of the classes improved the model’s ability to predict, 
based on a better performance of the metrics (Fig. 3 

A). These results were corroborated by the confusion 
matrix, in which classifications for plot 2 showed OA 
values below 60%, indicating high error rates. This is 
contrary to plot 1 where OA values were greater than 
74%. The reduction of classes improved the predictive 
capacity of the algorithm, achieving an OA greater than 
87% (Fig. 3B).

The classifier with the best results was the one that 
used the spectral bands as predictive variables and 
considered the following classes (S, VW, UA, W, and 
HP); the classifier with the worst results considered all 
classes using the spectral bands and the spectral indices 
as predictive variables (Fig. 3 A and B). To corroborate 
the results found with the OA and ROC-AUC metrics, 
the accuracy and kappa index parameters showed the 
same behavior; they also indicate that the classifica-
tion in plot 2 does not represent a good estimate of real 
phytosanitary status under field conditions (Table 3 and 
Figs. 4–6).

Figures  4, 5, and 6 show the visualization of the 
classification of the previously mentioned combinations 
in the evaluated plots. In each of the evaluated models 
(Table 1, Figs. 4, 5, and 6), it was found that 100% of the 
classes associated with VW in plot 1 were discriminated 
correctly, whereas for plot 2, an underestimation was 
presented (values between 50 and 100%). For WL, 100% 
of classes were classified correctly for the three models in 
the two plots evaluated. UA showed contrasting results, 
plot 1 showed an underestimation, resulting in only 50% of 
classes being correctly identified, while in plot 2, the result 
was an overestimation, with increases of 300% (Figs. 4, 5, 
and 6).

Discussion

UA was important in the evaluated plots and the 
described symptoms did not match the diseases or dis-
orders reported in potato crops (Stevenson et al. 2002; 
Torres 2002). For this reason, this symptomatology was 
called unknown alteration. On the other hand, plants 
showing vascular wilt from which Verticillium sp. was 
isolated matched the reports of the disease in potato 
plants (Krikun and Orion 1979; Stevenson et al. 2002; 
Torres 2002; Johnson and Dung 2010; Wheeler and 
Johnson 2016). Regarding the third physiopathology, its 

Fig. 3   Model selection parameters for the classification of diseases 
and physiological disorders in potato plants of the variety Diacol 
Capiro. A Receiver operation characteristic (ROC) curves and area 
under the curve (AUC) values. B Confusion matrix. Vertical rows, 
true class; horizontal column, predicted class. S, soil; VW, Verticil-
lium wilt; HP, healthy plants; UA, unknown alteration; W, water; WL, 
waterlogging
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our case, they can be grouped instead into the normal 
green color of the plant (WL, VW), tissue necrosis (LB, 
VW), and turgor changes (VW). The changes found in the 
plants were reflected in specific informative bands and, 
therefore, in the indices evaluated. In this sense, NDVI 
showed good discrimination capacity for UA according 
to GLM, but this was not reflected in the variable prior-
itization with RF algorithm. The GNDVI showed a high 
differentiation capacity of VW, coinciding with the GLM 
and RF algorithm. These results indicate that the most 
informative spectral bands for the detection of alterations 
in potatoes are green, red, and near infrared. These bands 
have been associated with the ability to detect changes 
in color, structure density, and biochemical condition of 
leaves (Yang et al. 2007; Naidu et al. 2009; Lowe et al. 
2017). In addition, the NDVI was successful in detecting 
symptoms of advanced stages of VW such as foliar chlo-
rosis, leaf, wilting, and defoliation (Calderón et al. 2013), 
which coincides with the low discrimination capacity 
found in plot 2 given the low incidence and severity dis-
played by VW.

Based on the GML, kappa index, and RF algorithm, 
our results showed a moderate to good discrimination 
capacity for VW and UA. Nevertheless, the more 
diverse symptoms profile in VW may explain the 
higher variation in the discrimination power among the 
evaluated indices (Table 2). In contrast, events of UA, 
with less variation in the visual symptoms, were well 
discriminated more often according to the kappa index. 
In our study, the variation observed among indices and 
a disease or disorder in potato crops could be related 
to the level of variation in the expressed symptoms. 
This may involve one or more physiological responses 
reflected in the detected spectral responses (Lowe et al. 
2017). Additionally, the degree of severity was a highly 
determining factor of the discriminant capacity of the 
evaluated methods. This explains the obtained results in 
plot 2, where the severity of all diseases and disorders 
was less than 10% of leaf area affected. Moreover, it 
was not possible to discriminate the class associated 
with late blight (LB) despite previous reports of success 
under low severity levels (Franceschini et al. 2019).

Using data from multispectral sensors attached to 
UAVs showed a great potential in the identification and 

expression in plants was associated with waterlogging 
stress (Orsák et al. 2020). The fourth disease was asso-
ciated with late blight caused by P. infestans (Fry et al. 
1993). To manage this disease, fungicide applications 
are carried out during the crop cycle (Silva et al. 2010), 
which possibly explains the low incidence and leaf area 
affected (severity) found in the evaluated plots.

The vegetation indices used in this research showed con-
trasting results since it was only possible to have a high dis-
criminative capacity between healthy plants and those with 
UA and VW with the use of GNDVI and NDVI. The evalu-
ated indices were a tool that allows early detection of stress 
sources in multiple production systems, including potatoes. 
However, they have some limitations especially associated 
with sensitivity and specificity, when used under field condi-
tions (Yang et al. 2007; Naidu et al. 2009; Dash et al. 2017; 
Couture et al. 2018; Duarte-Carvajalino et al. 2018; Polder 
et al. 2019).

The RF algorithm, a machine learning tool, was used in 
this study as an alternative that allowed a suitable approxi-
mation to the indirect detection of different disorders and 
sanitary problems in potato crops under field conditions, 
considering spectral bands acquired using the multispec-
tral cameras attached to drones and the calculated vegeta-
tion indices (Figs. 4–6). The RF algorithm has multiple 
advantages over other machine learning tools, given its 
simplicity in terms of the number of parameters to be opti-
mized (Svetnik et al. 2003; Pal 2005).

We included the spectral indices as additional train-
ing/testing data to improve the prediction capacity of 
the algorithm used in this research. The classifier’s 
results were improved by the spectral classes, which 
is the opposite of what the literature states (Fletcher 
2016).

The stresses evaluated in our study are a response to 
different biotic or abiotic factors, but the visible expres-
sion of these alterations coincides in several of them. In 

Fig. 4   Classification of diseases and physiological disorders in potato 
plants of the variety Diacol Capiro under field conditions using 
random forest with spectral bands + vegetation index and selected 
classes. UA: unknown alteration
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discrimination of different diseases and physiological 
disorders in potato crops, becoming commercially 
important for the identification of sources of stress 
associated with biotic and abiotic factors (Fang and 
Ramasamy 2015; Lowe et  al. 2017; Mahlein et  al. 
2018). When attached to UAVs, these sensors have 
advantages over the use of aircrafts or satellites for the 
same purposes, since they can provide a higher spatial 
resolution, operate locally, and manage to penetrate 
inaccessible areas (Dash et al. 2017). This allows their 
commercial use in potato production systems as it has 
been demonstrated before (Gibson-Poole et al. 2017; 
Franceschini et al. 2019; Li et al. 2019).

The limitations found in our study were associated 
with (i) unbalanced classes and (ii) classes that could 
not be classified (late blight). Our explanation is focused 
on the fact that our analysis was performed under field 
conditions in commercial crops, with phytosanitary 
problems presented in a differential way in terms of 
disease or disorder level and depending on several fac-
tors (e.g., farmer considerations and tools for diseases 
management, among others). These conditions generated 
unbalanced classes that can significantly affect the clas-
sification (del Río et al. 2014), a phenomenon observed 
in plot 2 with a greater impact. In contrast, the classi-
fication capacity in plot 1 improved when we changed 
the prediction rule for another with majority vote incor-
porating artificial class weights into the RF classifier 
(Liaw and Wiener 2002; del Río et al. 2014). Another 
source of variation was generated as a consequence of 
the number of samples (n) and sampling units that were 
reduced to achieve a “practical sampling for the farm-
ers.” However, the results indicated the need to increase 
the n and use a homogeneous sampling unit to obtain the 
“optimal samples” in order to improve the performance 
of the classifier (Mellor et al. 2015).

The results of this research are a contribution to 
the visual recognition assisted by sensors of diseases 
and disorders such as VW and UA that are difficult to 
identify and discriminate in the field even at advanced 
stages. However, limitations associated with the 
detection of other plant alterations and high variation 
at the plot level were observed due to multiple factors 
such as temporality, spatial resolution, and the limited 
training data for the models (Immitzer et al. 2012). The 
small amount of data for calibration and evaluation 
leads to increases in errors and, therefore, decreases 
in the prediction capacity of the GLM (Vidoni 2003). 
This phenomenon has also been reported as limiting in 
the supervised classification using the RF algorithm, 
where it causes confusion in the model (Millard and 
Richardson 2015).

Despite these constraints, monitoring and image 
capture are recommended throughout the crop cycle 
since they can provide data on symptomatic variability 
that improves the differentiation between classes (Watts 
et al. 2011). Based on our results, we may consider that 
increasing the spatial resolution could increase the 
possibility of differentiating characteristic lesions or 
symptoms of each one of the alterations. This along 
with a greater number of field evaluation points per 
unit area, more assessments during the crop cycle, and 
additional vegetation indices considered can enhance 
the predictive capacity of the algorithm (Immitzer et al. 
2012). For subsequent studies, we also recommend the 
use of other algorithms to evaluate and compare their 
predictive capacity.

Spectral cameras attached to UAVs, sampling in the 
field, and the correct machine learning analysis are 
tools with a high potential application in the detection 
of diseases and physiological disorders in commercial 
potato production systems. From our study, we can 
conclude that in order to improve the capacity of a 
predictive model based on monitoring and image capture 
for more than one plant disease or disorder taking place 
under commercial conditions, it is highly recommended 
to increase the spatial resolution, use a high number of 
evaluation points per unit area, and perform more than 
one assessment during the crop cycle.

Fig. 5   Classification of diseases and physiological disorders in potato 
plants of the variety Diacol Capiro under field conditions using ran-
dom forest with bands + vegetation index including all classes.UA: 
unknown alteration
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