Feasibility of reservoir monitoring in the Groningen gas field using ghost reflections from seismic interferometry

Research output: Contribution to journalArticleScientificpeer-review

11 Downloads (Pure)

Abstract

Seismic interferometry (SI) retrieves new seismic responses, for example reflections, between either receivers or sources. When SI is applied to a reflection survey with active sources and receivers at the surface, non-physical (ghost) reflections are retrieved as well. Ghost reflections, retrieved from the correlation of two primary reflections or multiples from two different depth levels, are only sensitive to the properties in the layer that cause them to appear in the result of SI, such as velocity, density and thickness. We aim to use these ghost reflections for monitoring subsurface changes, to address challenges associated with detecting and isolating changes within the target layer in monitoring. We focus on the feasibility of monitoring pore-pressure changes in the Groningen gas field in the Netherlands using ghost reflections. To achieve this, we utilize numerical modelling to simulate scalar reflection data, deploying sources and receivers at the surface. To build up subsurface models for monitoring purposes, we perform an ultrasonic transmission laboratory experiment to measure S-wave velocities at different pore pressures. Applying SI by autocorrelation to the modelled data sets, we retrieve zero-offset ghost reflections. Using a correlation operator, we determine time differences between a baseline survey and monitoring surveys. To enhance the ability to detect small changes, we propose subsampling the ghost reflections before the correlation operator and using only virtual sources with a complete illumination of receivers. We demonstrate that the retrieved time differences between the ghost reflections exhibit variations corresponding to velocity changes inside the reservoir. This highlights the potential of ghost reflections as valuable indicators for monitoring even small changes. We also investigate the effect of the sources and receivers’ geometry and spacing and the number of virtual sources and receivers in retrieving ghost reflections with high interpretability resolution.

Original languageEnglish
Pages (from-to)1018-1029
Number of pages12
JournalGeophysical Journal International
Volume237
Issue number2
DOIs
Publication statusPublished - 2024

Keywords

  • Induced seismicity
  • Numerical modelling
  • Seismic interferometry

Fingerprint

Dive into the research topics of 'Feasibility of reservoir monitoring in the Groningen gas field using ghost reflections from seismic interferometry'. Together they form a unique fingerprint.

Cite this