Tunable visible emission and persistent luminescence of BaGa2O4:Cu2+

Lei Wang, Ning Zhao, Changrui Zhu, Lei Chen, Yang Jiang, Rulong Zhou, Yanfang Liu, Bingyan Qu*, Hubertus T. Hintzen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

In the field of solid-state luminescence, Cu2+ has long been widely acknowledged for its capacity to emit infrared light. However, the occurrence of visible emission from Cu2+ ions had been infrequently observed and reported. In this study, we made an intriguing discovery by examining the behavior of Cu2+ within an irregular coordination environment of Ba in BaGa2O4. When excited by UV light, Cu2+ unexpectedly gave a vibrant yellow–red emission, covering a wavelength range spanning from 500 to 750 nm. More noteworthy, by simply manipulating the excitation wavelength or adjusting the temperature, the peak wavelength of the emission could be effectively tuned from approximately 600 to 660 nm, which could be attributed to the luminescence nature of the charge transfer (CT) between O2− and Cu2+. Moreover, the phosphor material displayed a remarkable persistent luminescence (PerL) lasting up to 12 h after UV light excitation. Through thermoluminescence (TL) measurements and first-principle calculations, we found that the intrinsic defects, such as vacancies of oxygen and gallium (VO and VGa), played important roles for the PerL phenomena. These findings highlighted the exceptional tunability and PerL properties of BaGa2O4:Cu2+. Our study provided a new potential guideline for the design of Cu2+-activated phosphors in visible region, and opened up new avenues for the research in related functional luminescence materials.

Original languageEnglish
Article number149361
Number of pages9
JournalChemical Engineering Journal
Volume483
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Cu luminescence
  • Mechanism
  • Persistent luminescence
  • Phosphors
  • Tunable emission

Fingerprint

Dive into the research topics of 'Tunable visible emission and persistent luminescence of BaGa2O4:Cu2+'. Together they form a unique fingerprint.

Cite this