Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology

Ella Fokkinga, Juan A. Hernandez-Tamames, Andrada Ianus, Markus Nilsson, Chantal M.W. Tax, Raquel Perez-Lopez*, Francesco Grussu*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. Level of Evidence: NA. Technical Efficacy: Stage 2.

Original languageEnglish
Number of pages27
JournalJournal of Magnetic Resonance Imaging
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • body
  • cancer
  • diffusion-weighted magnetic resonance imaging
  • histology
  • microstructure

Fingerprint

Dive into the research topics of 'Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology'. Together they form a unique fingerprint.

Cite this