Abstract
This article presents a digital-input class-D amplifier (CDA) achieving high dynamic range (DR) by employing a chopped capacitive feedback network and a capacitive digital-to-analog converter (DAC). Compared with conventional resistive-feedback CDAs driven by resistive or current-steering DACs, the proposed architecture eliminates the noise from the DAC and feedback resistors. Intermodulation between the chopping, pulsewidth modulation (PWM), and DAC sampling frequency is analyzed to avoid negative impacts on the DR and linearity. Real-time dynamic element matching (RTDEM) is employed to address distortion due to mismatch in the DAC, while its intersymbol interference (ISI) is eliminated by deadbanding. The prototype, implemented in a 180-nm bipolar, CMOS, and DMOS (BCD) process, achieves 120.9 dB of DR and a peak total harmonic distortion plus noise (THD+N) of-111.2 dB. It can drive a maximum of 15/26 W into an 8-/4-Ω load with a peak efficiency of 90%/86%.
Original language | English |
---|---|
Article number | 3318731 |
Pages (from-to) | 3470-3480 |
Number of pages | 11 |
Journal | IEEE Journal of Solid-State Circuits |
Volume | 58 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Capacitively coupled chopper amplifier (CCCA)
- Choppers (circuits)
- class-D amplifier (CDA)
- digital-to-analog converter
- dynamic element matching (DEM)
- Finite impulse response filters
- Gain
- intersymbol interference (ISI)
- Jitter
- Preamplifiers
- Pulse width modulation
- Quantization (signal)