TY - JOUR
T1 - A comparison of the dynamic thermal sensation between the modified Stolwijk model and the Fiala thermal physiology and comfort (FPC) model
AU - Roelofsen, Paul
PY - 2019
Y1 - 2019
N2 - Stolwijk developed a thermophysiological human model which, to day, is still the basis and inspiration for many other thermophysiological human models. The Stolwijk model used in this study is improved with regard of the calculation of the skin temperature and equipped with clothing as well as thermal sensation. Fiala also developed a thermophysiological model, based on the Stolwijk model, and is currently considered to be the latest development in thermophysiological human models. The current version of the Fiala model is known in practice as the Fiala thermal Physiology and Comfort (FPC) model. In the FPC model an equation is included to predict the thermal sensation under dynamic conditions, the so called Dynamic Thermal Sensation (DTS), based on the simulated core temperature and the mean skin temperature. This DTS-model was developed based on the subjects’ votes in early studies, which did not involve physiological measurements; instead, Fiala used his physiology model to predict the skin and the core temperatures from environmental variables measured in the tests. The correlations are therefore specific to the Fiala physiology model. In order to find out to what extent the DTS calculation results of the modified Stolwijk model deviate from the FPC model (version 5.3), in this study a number of variant calculations were carried out. Three well described and known scientific experiments from the professional literature are used for this, for a homogenous step-change transient thermal environment and for sedentary activity.
AB - Stolwijk developed a thermophysiological human model which, to day, is still the basis and inspiration for many other thermophysiological human models. The Stolwijk model used in this study is improved with regard of the calculation of the skin temperature and equipped with clothing as well as thermal sensation. Fiala also developed a thermophysiological model, based on the Stolwijk model, and is currently considered to be the latest development in thermophysiological human models. The current version of the Fiala model is known in practice as the Fiala thermal Physiology and Comfort (FPC) model. In the FPC model an equation is included to predict the thermal sensation under dynamic conditions, the so called Dynamic Thermal Sensation (DTS), based on the simulated core temperature and the mean skin temperature. This DTS-model was developed based on the subjects’ votes in early studies, which did not involve physiological measurements; instead, Fiala used his physiology model to predict the skin and the core temperatures from environmental variables measured in the tests. The correlations are therefore specific to the Fiala physiology model. In order to find out to what extent the DTS calculation results of the modified Stolwijk model deviate from the FPC model (version 5.3), in this study a number of variant calculations were carried out. Three well described and known scientific experiments from the professional literature are used for this, for a homogenous step-change transient thermal environment and for sedentary activity.
KW - HVAC systems
KW - indoor environmental quality
KW - Mathematical modelling
KW - performance
KW - thermal comfort
UR - http://www.scopus.com/inward/record.url?scp=85061227028&partnerID=8YFLogxK
U2 - 10.1080/17508975.2019.1571991
DO - 10.1080/17508975.2019.1571991
M3 - Comment/Letter to the editor
AN - SCOPUS:85061227028
SN - 1750-8975
VL - 12
SP - 284
EP - 294
JO - Intelligent Buildings International
JF - Intelligent Buildings International
IS - 4
ER -