A hierarchic isogeometric hyperelastic solid-shell

Leonardo Leonetti, Hugo M. Verhelst

Research output: Contribution to journalArticleScientificpeer-review

19 Downloads (Pure)

Abstract

The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.

Original languageEnglish
Number of pages20
JournalComputational Mechanics
DOIs
Publication statusPublished - 2024

Keywords

  • Hyperelastic materials
  • Isogeometric analysis
  • Large deformations
  • Large Strains
  • MIP Newton
  • Solid-shells

Fingerprint

Dive into the research topics of 'A hierarchic isogeometric hyperelastic solid-shell'. Together they form a unique fingerprint.

Cite this