Abstract
A hole bilayer in a strained germanium double quantum well is designed, fabricated, and studied. Magnetotransport characterization of double quantum well field-effect transistors as a function of gate voltage reveals the population of two hole channels with a high combined mobility of (Formula presented.) and a low percolation density of (Formula presented.). The individual population of the channels from the interference patterns of the Landau fan diagram was resolved. At a density of (Formula presented.) the system is in resonance and an anti-crossing of the first two bilayer subbands is observed and a symmetric-antisymmetric gap of (Formula presented.) is estimated, in agreement with Schrödinger-Poisson simulations.
Original language | English |
---|---|
Article number | 2100167 |
Number of pages | 5 |
Journal | Advanced Quantum Technologies |
Volume | 5 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- 3D
- circuits
- germanium
- holes
- qubits