Abstract
In this work, a highly linear temperature sensor based on a silicon carbide (SiC) p-n diode is presented. Under a constant current biasing, the diode has an excellent linear response to the temperature (from room temperature to 600°C). The best linearity (coefficient of determination ${R}^{{2}}$ = 99.98%) is achieved when the current density is 0.53 mA/cm2. The maximum sensitivity of the p-n diode is 3.04 mV/°C. The temperature sensor is fully compatible with Fraunhofer Institute (FHG) IISB's open SiC CMOS (complementary metal-oxide-semiconductor) technology, thus enabling the monolithic integration with SiC readout circuits for high-temperature applications. The sensor also features a simple fabrication process. To our knowledge, the presented device is the first SiC diode temperature sensor that does not require a mesa etch or backside contacts.
Original language | English |
---|---|
Pages (from-to) | 995-998 |
Number of pages | 4 |
Journal | IEEE Electron Device Letters |
Volume | 44 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- high temperature
- Linearity
- p-n diode
- Schottky diodes
- Sensitivity
- Silicon carbide
- Temperature distribution
- Temperature measurement
- temperature sensor
- Temperature sensors