TY - JOUR
T1 - A hybrid ensemble learning framework for zero-energy potential prediction of photovoltaic direct-driven air conditioners
AU - Lu, Chujie
AU - Li, Sihui
AU - Gu, Junhua
AU - Lu, Weizhuo
AU - Olofsson, Thomas
AU - Ma, Jianguo
PY - 2023
Y1 - 2023
N2 - Integrating renewable energy is a promising solution for buildings to achieve the net-zero-energy goal. Expanding real-time matching between renewable energy generation and building energy demand can help realize more enormous zero-energy potential in practice. However, there are few studies to investigate the real-time energy matching in renewable energy building design. Therefore, in this study, a hybrid ensemble learning framework is proposed for analyzing and predicting zero-energy potential in the real-time matching of photovoltaic direct-driven air conditioner (PVAC) systems. First, the datasets of zero-energy probability (ZEP) are generated under the three main climate regions in China, which are with consideration of the load flexibility of air conditioners and based on six important design variables. Second, a novel ensemble learning method named Extreme Gradient Boosting (XGBoost) is selected to predict ZEP and the Bayesian Optimization (BO) is adopted to identify the optimal hyperparameters and further improve the prediction performance. The statistical analysis shows that ZEP distributions are very different from one region to another one and the PVAC systems in Beijing are the easiest to achieve the zero-energy goal. Among all the variables, PV capacity is the most significant and positively related to ZEP. The prediction results show BO-XGBoost achieves more than 99% accuracy and outperforms other benchmark models in the ZEP prediction of three cities. In a word, this paper reveals BO-XGBoost is the most effective model for ZEP prediction and provides the framework for designers to utilize zero-energy potential analysis and prediction for the first time.
AB - Integrating renewable energy is a promising solution for buildings to achieve the net-zero-energy goal. Expanding real-time matching between renewable energy generation and building energy demand can help realize more enormous zero-energy potential in practice. However, there are few studies to investigate the real-time energy matching in renewable energy building design. Therefore, in this study, a hybrid ensemble learning framework is proposed for analyzing and predicting zero-energy potential in the real-time matching of photovoltaic direct-driven air conditioner (PVAC) systems. First, the datasets of zero-energy probability (ZEP) are generated under the three main climate regions in China, which are with consideration of the load flexibility of air conditioners and based on six important design variables. Second, a novel ensemble learning method named Extreme Gradient Boosting (XGBoost) is selected to predict ZEP and the Bayesian Optimization (BO) is adopted to identify the optimal hyperparameters and further improve the prediction performance. The statistical analysis shows that ZEP distributions are very different from one region to another one and the PVAC systems in Beijing are the easiest to achieve the zero-energy goal. Among all the variables, PV capacity is the most significant and positively related to ZEP. The prediction results show BO-XGBoost achieves more than 99% accuracy and outperforms other benchmark models in the ZEP prediction of three cities. In a word, this paper reveals BO-XGBoost is the most effective model for ZEP prediction and provides the framework for designers to utilize zero-energy potential analysis and prediction for the first time.
KW - Bayesian optimization
KW - Machine learning
KW - Photovoltaic direct-driven air conditioners
KW - Thermal comfort
KW - Zero energy potential
UR - http://www.scopus.com/inward/record.url?scp=85142748107&partnerID=8YFLogxK
U2 - 10.1016/j.jobe.2022.105602
DO - 10.1016/j.jobe.2022.105602
M3 - Article
AN - SCOPUS:85142748107
SN - 2352-7102
VL - 64
JO - Journal of Building Engineering
JF - Journal of Building Engineering
M1 - 105602
ER -