A tracing algorithm for flow diagnostics on fully unstructured grids with multipoint flux approximation

Zhao Zhang*, Sebastian Geiger, Margaret Rood, Carl Jacquemyn, Matthew Jackson, Gary Hampson, Felipe Moura De Carvalho, Clarissa Coda Marques Machado Silva, Julio Daniel Machado Silva, Mario Costa Sousa

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

14 Citations (Scopus)

Abstract

Flow diagnostics is a common way to rank and cluster ensembles of reservoir models depending on their approximate dynamic behavior before beginning full-physics reservoir simulation. Traditionally, they have been performed on corner-point grids inherent to geocellular models. The rapid-reservoir-modeling (RRM) concept aims at fast and intuitive prototyping of geologically realistic reservoir models. In RRM, complex reservoir heterogeneities are modeled as discrete volumes bounded by surfaces that are sketched in real time. The resulting reservoir models are discretized by use of fully unstructured tetrahedral meshes where the grid conforms to the reservoir geometry, hence preserving the original geological structures that have been modeled. This paper presents a computationally efficient work flow for flow diagnostics on fully unstructured grids. The control-volume finite-element method (CVFEM) is used to solve the elliptic pressure equation. The flux field is a multipoint flux approximation (MPFA). A new tracing algorithm is developed on a reduced monotone acyclic graph for the hyperbolic transport equations of time of flight (TOF) and tracer distributions. An optimal reordering technique is used to deal with each control volume locally such that the hyperbolic equations can be computed in an efficient node-by-node manner. This reordering algorithm scales linearly with the number of unknowns. The results of these computations allow us to estimate swept-reservoir volumes, injector/producer pairs, well-allocation factors, flow capacity, storage capacity, and dynamic Lorenz coefficients, which all help approximate the dynamic reservoir behavior. The total central-processing-unit (CPU) time, including grid generation and flow diagnostics, is typically a few seconds for meshes with O (100,000) unknowns. Such fast calculations provide, for the first time, real-time feedback in the dynamic reservoir behavior while models are prototyped.

Original languageEnglish
Pages (from-to)1946-1962
Number of pages17
JournalSPE Journal
Volume22
Issue number6
DOIs
Publication statusPublished - Dec 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'A tracing algorithm for flow diagnostics on fully unstructured grids with multipoint flux approximation'. Together they form a unique fingerprint.

Cite this