Abstract
Natural porous materials have exceptional properties—for example, light weight, mechanical resilience, and multi-functionality. Efforts to imitate their properties in engineered structures have limited success. This, in part, is caused by the complexity of multi-phase materials composites and by the lack of quantified understanding of each component's role in overall hierarchy. This challenge is twofold: 1) computational. because non-periodicity and defects render constructing design guidelines between geometries and mechanical properties complex and expensive and 2) experimental. because the fabrication and characterization of complex, often hierarchical and non-periodic 3D architectures is non-trivial.
Original language | English |
---|---|
Article number | 2308149 |
Number of pages | 9 |
Journal | Advanced Materials |
Volume | 36 |
Issue number | 34 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- additive manufacturing
- anisotropy
- biomimetic
- machine learning
- scaffold design