Air–water properties of unsteady breaking bore part 2: Void fraction and bubble statistics

Rui Shi*, Davide Wüthrich, Hubert Chanson

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
8 Downloads (Pure)

Abstract

Continuing from the part 1 (Shi et al., 2022) this paper presents an experimental investigation of transient void fraction and bubble statistics in a highly turbulent breaking bore with Fr1=2.4. The measurements were conducted using a combination of dual-tip phase-detection probes and an ultra-high-speed video camera. The enclosed bubble detection technique (EBDT) used the synchronised probe and camera signals to provide the contour of instantaneous void fraction in the bore roller. The ensemble-averaged void fraction was derived, and compared to analytical solutions of air diffusion models. The bubble statistics were characterised by the bubble clustering properties, pseudo bubble count rate and bubble size spectrum. The clustering data showed the non-random bubble grouping in the shear layer, and the bubble size distributions N(r) followed a commonly adopted bubble break-up model: N(r)∝r−m, where r was the equivalent bubble radius in the present study. The comparison indicated that, in the breaking bore, its air diffusion process was similar to that in a stationary hydraulic jump, and the bubble break-up process was comparable to that in breaking waves.

Original languageEnglish
Article number104337
JournalInternational Journal of Multiphase Flow
Volume159
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Breaking bore
  • Bubble clustering
  • Bubble size spectrum
  • Dual-tip phase detection probe
  • Image processing
  • Unsteady gas–liquid flow
  • Void fraction

Fingerprint

Dive into the research topics of 'Air–water properties of unsteady breaking bore part 2: Void fraction and bubble statistics'. Together they form a unique fingerprint.

Cite this