Abstract
We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of the temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape but that the two are not monotonically related. The ground state of this two-dimensional electron system is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magnetotransport measurements.
Original language | English |
---|---|
Article number | 036801 |
Number of pages | 6 |
Journal | Physical Review Letters |
Volume | 122 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2019 |