CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq

Research output: Contribution to journalArticleScientificpeer-review

4 Downloads (Pure)

Abstract

The power of single-cell RNA sequencing (scRNA-seq) in detecting cell heterogeneity or developmental process is becoming more and more evident every day. The granularity of this knowledge is further propelled when combining two batches of scRNA-seq into a single large dataset. This strategy is however hampered by technical differences between these batches. Typically, these batch effects are resolved by matching similar cells across the different batches. Current approaches, however, do not take into account that we can constrain this matching further as cells can also be matched on their cell type identity. We use an auto-encoder to embed two batches in the same space such that cells are matched. To accomplish this, we use a loss function that preserves: (1) cell-cell distances within each of the two batches, as well as (2) cell-cell distances between two batches when the cells are of the same cell-type. The cell-type guidance is unsupervised, i.e., a cell-type is defined as a cluster in the original batch. We evaluated the performance of our cluster-guided batch alignment (CBA) using pancreas and mouse cell atlas datasets, against six state-of-the-art single cell alignment methods: Seurat v3, BBKNN, Scanorama, Harmony, LIGER, and BERMUDA. Compared to other approaches, CBA preserves the cluster separation in the original datasets while still being able to align the two datasets. We confirm that this separation is biologically meaningful by identifying relevant differential expression of genes for these preserved clusters.
Original languageEnglish
Article number644211
Pages (from-to)1-12
Number of pages12
JournalFrontiers in Genetics
Volume12
DOIs
Publication statusPublished - 2021

Keywords

  • auto-encoder
  • batch correction
  • clustering
  • data integration
  • single-cell RNA sequencing

Fingerprint Dive into the research topics of 'CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq'. Together they form a unique fingerprint.

Cite this