TY - JOUR
T1 - Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro- and Nanoswimmers
T2 - A Review
AU - Rahimi, Ehsan
AU - Sanchis-Gual, Roger
AU - Chen, Xiangzhong
AU - Imani, Amin
AU - Gonzalez-Garcia, Yaiza
AU - Asselin, Edouard
AU - Mol, Arjan
AU - Fedrizzi, Lorenzo
AU - Pané, Salvador
AU - Lekka, Maria
PY - 2023
Y1 - 2023
N2 - The last two decades have witnessed the emergence of micro- and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro- and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal-based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non-toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments.
AB - The last two decades have witnessed the emergence of micro- and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro- and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal-based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non-toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments.
KW - biodegradation
KW - biomedicine
KW - corrosion
KW - small-scale swimmers
UR - http://www.scopus.com/inward/record.url?scp=85164685380&partnerID=8YFLogxK
U2 - 10.1002/adfm.202210345
DO - 10.1002/adfm.202210345
M3 - Review article
AN - SCOPUS:85164685380
SN - 1616-301X
VL - 33
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 44
M1 - 2210345
ER -