Comparison of Data-driven Prognostics Models: A Process Perspective

Rui Li, Wim Verhagen, Richard Curran

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

37 Downloads (Pure)


Remaining useful life (RUL) prediction is crucial for the implementation of Prognostics and Health Management (PHM) systems, enabling application of predictive maintenance strategies for critical systems (e.g. in aviation, power, railway). Existing literature addresses aspects of data-driven prognostic approaches, with a predominant focus on introducing and testing various novel prediction techniques which are purposed towards improving prediction accuracy performance. However, a relative lack of research can be identified when considering a comparative evaluation of competing for data-driven approaches. In particular, the contributing process elements and characteristics of data-driven prognostics methods are typically not compared in detail. To overcome these drawbacks, this paper aims to evaluate the underlying technical processes for statistical and artificial neural networks (ANN) methods for prognostics. A case study is conducted to implement both approaches on the PHM08 Challenge Data Set for comparison. This research comprehensively compares the statistical and ANN prognostic methods in a systematic manner, covering and comparing their respective technical processes, and evaluates the results with respect to prediction accuracy
Original languageEnglish
Title of host publicationProceedings of the 29th European Safety and Reliability Conference, ESREL 2019
EditorsMichael Beer, Enrico Zio
Place of PublicationSingapore
PublisherResearch Publishing
Number of pages8
ISBN (Electronic)9789811127243
ISBN (Print)978-981-11-2724-3
Publication statusPublished - 26 Sep 2019
Event29th European Safety and Reliability Conference - Hannover, Germany
Duration: 22 Sep 201926 Sep 2019

Publication series

NameProceedings of the 29th European Safety and Reliability Conference, ESREL 2019


Conference29th European Safety and Reliability Conference
Abbreviated titleESREL 2019
Internet address


  • Remaining useful life (RUL)
  • Prognostics and Health Management (PHM)
  • Data-Driven Prognostics
  • Statistical Prognostic
  • Artificial Neural Network (ANN)


Dive into the research topics of 'Comparison of Data-driven Prognostics Models: A Process Perspective'. Together they form a unique fingerprint.

Cite this