Compliant joints utilizing the principle of closed form pressure balancing

D.D. Sonneveld*, J.P.A. Nijssen, R.A.J. van Ostayen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

70 Downloads (Pure)


Compliant joints have significant advantages compared to rigid-body hinges due to a monolithic design and the absence of friction, which prevents effects like wear, backlash, and stick-slip behavior. However, the loading capability is often limited and the support stiffness generally decreases during rotation. A new design principle called closed form pressure balancing has been proposed as a solution to improve these limitations. By using an incompressible fluid as the main compliant element, the support stiffness becomes independent of rotation and buckling no longer limits the loading capability. This work analyzes the fundamental working principle behind closed form pressure balancing and introduces a 2D design model to determine stiffness properties. The design model is validated with a finite element model and used to construct an optimization strategy for optimum joint performance. Additionally, a conversion model and some practical considerations are presented for the transition to a 3D design model.
Original languageEnglish
Article number083601
Number of pages10
JournalJournal of Mechanical Design
Issue number8
Publication statusPublished - 2023


  • compliant joint
  • universal joint
  • closed form pressure balancing
  • large rotation


Dive into the research topics of 'Compliant joints utilizing the principle of closed form pressure balancing'. Together they form a unique fingerprint.

Cite this