Cost-effective Seismic Reflection Imaging Using Seismic Interferometry for Imaging of Enhanced Geothermal System: A Case Study in the Neuquén Basin

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review


We investigate the applicability of passive seismic interferometry using P-wave coda from local earthquakes for the purpose of retrieving reflections for imaging enhanced geothermal systems. For this, we use ambient-noise data recorded in the Neuquén basin, Argentina, where the Peteroa and Los Molles geothermal fields are present nearby. After retrieving reflections, we proceed to process them following a standard processing sequence to obtain images of the crustal structures. Examining crosscorrelation, crosscoherence, and multidimensional deconvolution approaches, we find that multidimensional deconvolution, based on the truncated singular-value decomposition scheme, gives us slightly better structural imaging than the other two approaches. Our results provide higher-resolution imaging of the crustal structures down to the lower boundary of the Moho in comparison with previous passive seismic imaging by receiver function and global-phase seismic interferometry in this region. We also interpret the deep basement thrust fault that has been indicated by active-seismic reflection profile and nearby exploration well. The method we propose could be used as a low-cost alternative to active-source acquisition for imaging and monitoring purposes of deeper geothermal reservoirs, e.g., in enhanced geothermal systems, where the target structures are down to 10 km depth.
Original languageEnglish
Title of host publication78th EAGE Conference and Exhibition 2016, Vienna, Austria
Number of pages5
Publication statusPublished - 2016
Event78th EAGE Conference and Exhibition 2016 - Messe Wien, Exhibition and Congress Center, Vienna, Austria
Duration: 30 May 20162 Jun 2016
Conference number: 78


Conference78th EAGE Conference and Exhibition 2016
Abbreviated titleEAGE 2016
Internet address

Cite this