Abstract
The capacity to precisely pipette femtoliter volumes of liquid enables many applications, for example, to functionalize a nanoscale surface and manipulate fluids inside a single-cell. A pressure-controlled pipetting method is the most preferred, since it enables the widest range of working liquids. However, precisely controlling femtoliter volumes by pressure is challenging. In this work, a new concept is proposed that makes use of axisymmetrical phaseguides inside a microfluidic channel to pipette liquid in discrete steps of known volume. An analytical model for the design of the femtopipettes is developed and verified experimentally. Femtopipettes are fabricated using a multi-scale 3D printing strategy integrating a digital light processing printed part and a two-photon-polymerization printed part. Three different variants are designed and fabricated with pipetting resolutions of 10 picoliters, 180 femtoliters and 50 femtoliters. As a demonstration, controlled amounts of a water-glycerol mixture were first aspirated and then dispensed into a mineral oil droplet.
Original language | English |
---|---|
Article number | 2300942 |
Number of pages | 10 |
Journal | SMALL METHODS |
Volume | 8 (2024) |
Issue number | 3 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- 3D printing
- femtoliter
- Microfluidics
- Phaseguide
- Pipetting