Do logarithmic terms exist in the drag coefficient of a single sphere at high Reynolds numbers?

Yousef M.F. El Hasadi, Johan T. Padding

Research output: Contribution to journalArticleScientificpeer-review

13 Downloads (Pure)

Abstract

At the beginning of the second half of the twentieth century, Proudman and Pearson (J. Fluid. Mech.,2(3), 1956, pp.237–262) suggested that the functional form of the drag coefficient (CD) of a single sphere subjected to uniform fluid flow consists of a series of logarithmic and power terms of the Reynolds number (Re). In this paper, we will explore the validity of the above statement for Reynolds numbers up to 106 by using a symbolic regression machine learning method. The algorithm is trained by available experimental data and data from well-known correlations from the literature for Re ranging from 0.1 to 2×105. Our results show that the functional form of CD contains powers of log(Re), plus the Stokes term. The logarithmic CD expressions can generalize (extrapolate) better beyond the training data than pure power series of Re and are the first in the literature to predict with acceptable accuracythe onset of the rapid decrease (drag crisis) of CD at high Re, but also to follow the right behaviour towards zero Re. We also find a connection between the root of the Re-dependent terms in the CD expression and the first point of laminar separation. The generalization behaviour of power-based drag coefficient equations is worse than logarithmic-based ones, especially towards the zero Re regime in which they give non-physical results. The logarithmic based CD correctly describes the physics from the low Re regime to the onset of the drag crisis. Also, by applying a minor modification in the logarithmic based equations, we can predict the drag coefficient of an oblate spheroid in the high Re regime.

Original languageEnglish
Article number118195
Number of pages21
JournalChemical Engineering Science
Volume265
DOIs
Publication statusPublished - 2023

Keywords

  • Drag coefficient
  • Machine learning
  • Matched asymptotic expansions
  • Multi-phase flows
  • sphere

Fingerprint

Dive into the research topics of 'Do logarithmic terms exist in the drag coefficient of a single sphere at high Reynolds numbers?'. Together they form a unique fingerprint.

Cite this