TY - JOUR
T1 - Dynamic modeling of syngas fermentation in a continuous stirred-tank reactor
T2 - Multi-response parameter estimation and process optimization
AU - de Medeiros, Elisa M.
AU - Posada, John A.
AU - Noorman, Henk
AU - Filho, Rubens Maciel
PY - 2019
Y1 - 2019
N2 - Syngas fermentation is one of the bets for the future sustainable biobased economies due to its potential as an intermediate step in the conversion of waste carbon to ethanol fuel and other chemicals. Integrated with gasification and suitable downstream processing, it may constitute an efficient and competitive route for the valorization of various waste materials, especially if systems engineering principles are employed targeting process optimization. In this study, a dynamic multi-response model is presented for syngas fermentation with acetogenic bacteria in a continuous stirred-tank reactor, accounting for gas–liquid mass transfer, substrate (CO, H2) uptake, biomass growth and death, acetic acid reassimilation, and product selectivity. The unknown parameters were estimated from literature data using the maximum likelihood principle with a multi-response nonlinear modeling framework and metaheuristic optimization, and model adequacy was verified with statistical analysis via generation of confidence intervals as well as parameter significance tests. The model was then used to study the effects of process conditions (gas composition, dilution rate, gas flow rates, and cell recycle) as well as the sensitivity of kinetic parameters, and multiobjective genetic algorithm was used to maximize ethanol productivity and CO conversion. It was observed that these two objectives were clearly conflicting when CO-rich gas was used, but increasing the content of H2 favored higher productivities while maintaining 100% CO conversion. The maximum productivity predicted with full conversion was 2 g·L−1·hr−1 with a feed gas composition of 54% CO and 46% H2 and a dilution rate of 0.06 hr−1 with roughly 90% of cell recycle.
AB - Syngas fermentation is one of the bets for the future sustainable biobased economies due to its potential as an intermediate step in the conversion of waste carbon to ethanol fuel and other chemicals. Integrated with gasification and suitable downstream processing, it may constitute an efficient and competitive route for the valorization of various waste materials, especially if systems engineering principles are employed targeting process optimization. In this study, a dynamic multi-response model is presented for syngas fermentation with acetogenic bacteria in a continuous stirred-tank reactor, accounting for gas–liquid mass transfer, substrate (CO, H2) uptake, biomass growth and death, acetic acid reassimilation, and product selectivity. The unknown parameters were estimated from literature data using the maximum likelihood principle with a multi-response nonlinear modeling framework and metaheuristic optimization, and model adequacy was verified with statistical analysis via generation of confidence intervals as well as parameter significance tests. The model was then used to study the effects of process conditions (gas composition, dilution rate, gas flow rates, and cell recycle) as well as the sensitivity of kinetic parameters, and multiobjective genetic algorithm was used to maximize ethanol productivity and CO conversion. It was observed that these two objectives were clearly conflicting when CO-rich gas was used, but increasing the content of H2 favored higher productivities while maintaining 100% CO conversion. The maximum productivity predicted with full conversion was 2 g·L−1·hr−1 with a feed gas composition of 54% CO and 46% H2 and a dilution rate of 0.06 hr−1 with roughly 90% of cell recycle.
KW - dynamic model
KW - ethanol
KW - multiobjective optimization
KW - parameter estimation
KW - statistical analysis
KW - syngas fermentation
UR - http://www.scopus.com/inward/record.url?scp=85071788300&partnerID=8YFLogxK
U2 - 10.1002/bit.27108
DO - 10.1002/bit.27108
M3 - Article
C2 - 31286472
AN - SCOPUS:85071788300
VL - 116
SP - 2473
EP - 2487
JO - Biotechnology and Bioengineering
JF - Biotechnology and Bioengineering
SN - 0006-3592
IS - 10
ER -