Dynamical coupling of intrinsically disordered proteins and their hydration water: Comparison with folded soluble and membrane proteins

F. X. Gallat, A. Laganowsky, K. Wood, F. Gabel, L. Van Eijck, J. Wuttke, M. Moulin, M. Härtlein, D. Eisenberg, J. P. Colletier, G. Zaccai, M. Weik*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

74 Citations (Scopus)

Abstract

Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.

Original languageEnglish
Pages (from-to)129-136
JournalBiophysical Journal
Volume103
Issue number1
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Dynamical coupling of intrinsically disordered proteins and their hydration water: Comparison with folded soluble and membrane proteins'. Together they form a unique fingerprint.

Cite this