Earth’s gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

X. Guo, P. Ditmar, Q. Zhao*, R. Klees, H. H. Farahani

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
61 Downloads (Pure)

Abstract

GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth’s gravity field. We propose a new data processing method which makes use of the ‘average acceleration’ approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

Original languageEnglish
Pages (from-to)1049–1068
Number of pages20
JournalJournal of Geodesy
Volume91
Issue number9
DOIs
Publication statusPublished - 25 Feb 2017

Keywords

  • Earth’s gravity field
  • GOCE
  • GPS
  • Kinematic orbit method
  • Phase method
  • Satellite accelerations

Fingerprint

Dive into the research topics of 'Earth’s gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements'. Together they form a unique fingerprint.

Cite this