Electrochemical arsenite oxidation for drinking water treatment: Mechanisms, by-product formation and energy consumption

E. Kraaijeveld*, S. Rijsdijk, S. van der Poel, J.P. van der Hoek, K. Rabaey, D. van Halem

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)


The mechanisms and by-product formation of electrochemical oxidation (EO) for As(III) oxidation in drinking water treatment using groundwater was investigated. Experiments were carried out using a flowthrough system, with an RuO 2/IrO 2 MMO Ti anode electrode, fed with synthetic and natural groundwater containing As(III) concentrations in a range of around 75 and 2 µg/L, respectively. Oxidation was dependent on charge dosage (CD) [C/L] and current density [A/m 2], with the latter showing plateau behaviour for increasing intensity. As(III) concentrations of <0.3 µg/L were obtained, indicating oxidation of 99.9 % of influent As(III). Achieving this required a higher charge dosage for the natural groundwater (>40 C/L) compared to the oxidation in the synthetic water matrix (20 C/L), indicating reaction with natural organic matter or other compounds. As(III) oxidation in groundwater required an energy consumption of 0.09 and 0.21 kWh/m 3, for current densities of 20 and 60 A/m 2, respectively. At EO settings relevant for As(III) oxidation, in the 30–100 C/L CD range, the formation of anodic by-products, as trihalomethanes (THMs) (0.11–0.75 µg/L) and bromate (<0.2 µg/L) was investigated. Interestingly, concentrations of the formed by-products did not exceed strictest regulatory standards of 1 µg/L, applicable to Dutch tap water. This study showed the promising perspective of EO as electrochemical advanced oxidation process (eAOP) in drinking water treatment as alternative for the conventional use of strong oxidizing chemicals.

Original languageEnglish
Article number121227
Number of pages10
JournalWater Research
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • Arsenic
  • Groundwater
  • THMs
  • Bromate


Dive into the research topics of 'Electrochemical arsenite oxidation for drinking water treatment: Mechanisms, by-product formation and energy consumption'. Together they form a unique fingerprint.

Cite this