Enhancing Emission via Radiative Lifetime Manipulation in Ultrathin InGaN/GaN Quantum Wells: The Effects of Simultaneous Electric and Magnetic Fields, Thickness, and Impurity

Redouane En-nadir, Mohamed A. Basyooni*, Mohammed Tihtih, Walid Belaid, Ilyass Ez-zejjari, El Ghmari Majda Majda, Haddou El Ghazi, Salim Ahmed, Izeddine Zorkani

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

27 Downloads (Pure)

Abstract

Ultra-thin quantum wells, with their unique charge confinement effects, are essential in enhancing the electronic and optical properties crucial for optoelectronic device optimization. This study focuses on theoretical investigations into radiative recombination lifetimes in nanostructures, specifically addressing both intra-subband (ISB: e-e) and band-to-band (BTB: e-hh) transitions within InGaN/GaN quantum wells (QWs). Our research unveils that the radiative lifetimes in ISB and BTB transitions are significantly influenced by external excitation, particularly in thin-layered QWs with strong confinement effects. In the case of ISB transitions (e-e), the recombination lifetimes span a range from 0.1 to 4.7 ns, indicating relatively longer durations. On the other hand, BTB transitions (e-hh) exhibit quicker lifetimes, falling within the range of 0.01 to 1 ns, indicating comparatively faster recombination processes. However, it is crucial to note that the thickness of the quantum well layer exerts a substantial influence on the radiative lifetime, whereas the presence of impurities has a comparatively minor impact on these recombination lifetimes. This research advances our understanding of transition lifetimes in quantum well systems, promising enhancements across optoelectronic applications, including laser diodes and advanced technologies in detection, sensing, and telecommunications.
Original languageEnglish
Article number2817
Number of pages16
JournalNanomaterials
Volume13
Issue number21
DOIs
Publication statusPublished - 2023

Keywords

  • quantum wells
  • radiative lifetime
  • electromagnetic excitation
  • impurity
  • thickness

Fingerprint

Dive into the research topics of 'Enhancing Emission via Radiative Lifetime Manipulation in Ultrathin InGaN/GaN Quantum Wells: The Effects of Simultaneous Electric and Magnetic Fields, Thickness, and Impurity'. Together they form a unique fingerprint.

Cite this