Evolution of soil arching: 2D analytical models

Rui Rui*, Frits van Tol, Yuan You Xia, Suzanne van Eekelen, Gang Hu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

49 Citations (Scopus)

Abstract

Three soil-arching evolution patterns in unreinforced piled embankments were observed in a series of two-dimensional (2D) model tests using a multitrapdoor test setup. These include the triangular expanding pattern, the tower-shaped evolution pattern, and the equal settlement pattern. The inclination of the slip surfaces and the height of the vertical slip surfaces that enclose the tower-shaped arches were found to be the critical parameters describing the arching evolution. Three analytical models were proposed to describe the evolution processes of the three arching-evolution patterns and to find the stress distributions of the corresponding processes. Load distribution equations were also derived from these models. Using the empirical relationships between the inclination of the slip surfaces and the tower height and settlement, the stress distribution ratio during the entire evolution process was calculated. The models matched the model tests well.

Original languageEnglish
Article number04018056
Number of pages15
JournalInternational Journal of Geomechanics
Volume18
Issue number6
DOIs
Publication statusPublished - 1 Jun 2018

Keywords

  • Analytical model
  • Arching evolution
  • Piled embankments
  • Soil arching
  • Trapdoor

Fingerprint

Dive into the research topics of 'Evolution of soil arching: 2D analytical models'. Together they form a unique fingerprint.

Cite this