TY - JOUR
T1 - Experimental Characterization of Upper Trailing Edge Flaps for Transonic Buffet Control
AU - D’Aguanno, Alessandro
AU - Schrijer, Ferdinand F.J.
AU - van Oudheusden, Bas W.
PY - 2022
Y1 - 2022
N2 - This experimental study investigates the possibility of controlling transonic buffet by means of a trailing edge flap with an upward deflection (referred to as “upper trailing edge flap”, or: UTEF). Different geometries (straight and serrated) and dimensions of UTEFs (with heights ranging between 1 and 2% of the chord) have been studied with respect to their impact on the buffet behavior. The effectiveness of the UTEFs has been investigated with schlieren and particle image velocimetry (PIV) in the transonic-supersonic wind tunnel of TU Delft at Ma = 0.70, α = 3.5°. The schlieren results demonstrated the efficacy of the use of UTEFs for reducing the range of the buffet oscillations when the height of the UTEF was equal to at least 1.5%c. This result was corroborated by a flow characterization with PIV data and which highlighted that, in presence of a control system, not only the shock oscillation range is reduced but also the intensity of the separated area pulsation. The use of serrated UTEFs, despite having an effect on the local flow field, was found to be ineffective in alleviating buffet oscillations. The adoption of the best behaving UTEF configuration (straight 2%c UTEF) proved to only slightly alter the circulation value compared to the clean configuration, while it also proved to be effective in an off-buffet condition (Ma = 0.74 and α = 2.5°).
AB - This experimental study investigates the possibility of controlling transonic buffet by means of a trailing edge flap with an upward deflection (referred to as “upper trailing edge flap”, or: UTEF). Different geometries (straight and serrated) and dimensions of UTEFs (with heights ranging between 1 and 2% of the chord) have been studied with respect to their impact on the buffet behavior. The effectiveness of the UTEFs has been investigated with schlieren and particle image velocimetry (PIV) in the transonic-supersonic wind tunnel of TU Delft at Ma = 0.70, α = 3.5°. The schlieren results demonstrated the efficacy of the use of UTEFs for reducing the range of the buffet oscillations when the height of the UTEF was equal to at least 1.5%c. This result was corroborated by a flow characterization with PIV data and which highlighted that, in presence of a control system, not only the shock oscillation range is reduced but also the intensity of the separated area pulsation. The use of serrated UTEFs, despite having an effect on the local flow field, was found to be ineffective in alleviating buffet oscillations. The adoption of the best behaving UTEF configuration (straight 2%c UTEF) proved to only slightly alter the circulation value compared to the clean configuration, while it also proved to be effective in an off-buffet condition (Ma = 0.74 and α = 2.5°).
KW - Control system
KW - PIV
KW - Serrations
KW - Transonic buffet
KW - Upper trailing edge flap
UR - http://www.scopus.com/inward/record.url?scp=85140988602&partnerID=8YFLogxK
U2 - 10.1007/s10494-022-00381-3
DO - 10.1007/s10494-022-00381-3
M3 - Article
AN - SCOPUS:85140988602
SN - 1386-6184
VL - 110
SP - 325
EP - 350
JO - Flow, Turbulence and Combustion
JF - Flow, Turbulence and Combustion
IS - 2
ER -