Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia

Kirsten Veerkamp*, Christopher P. Carty, Niels F.J. Waterval, Thomas Geijtenbeek, Annemieke I. Buizer, David G. Lloyd, Jaap Harlaar, Marjolein M. van der Krogt

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
30 Downloads (Pure)

Abstract

Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.

Original languageEnglish
Pages (from-to)333-346
JournalJournal of Applied Biomechanics
Volume39
Issue number5
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • cerebral palsy
  • forward dynamics
  • neuromusculoskeletal modeling
  • predictive simulations
  • spastic diplegia

Fingerprint

Dive into the research topics of 'Predicting Gait Patterns of Children With Spasticity by Simulating Hyperreflexia'. Together they form a unique fingerprint.

Cite this