Abstract
This article presents a feasibility study of single feed per beam quasi-optical (QO) antennas for enabling incoherent multiple-input multiple-output (MIMO) array front-end architectures at 270 GHz. The objective is to reach ultrafast and radiated energy efficient point-to-point (PtP) wireless links by exploiting the multimode capacity of radiative (Fresnel region) near-field links. In this article, we present a feasibility study of the number of independent links achievable with QO MIMO incoherent arrays. For this purpose, we present theoretical curves of the level of EM co-coupling and interference between the multiple modes versus the link distance. The study focuses at the 252-325 GHz spectral bandwidth defined by the new IEEE 802.15.3d standard. A specific and new MIMO array architecture operating at 270 GHz based on a 2 × 2 array of parabolic reflectors is proposed for a link distance of 100 m. The proposed PtP MIMO system is capable of generating 16 dual-polarized modes in a 70 GHz bandwidth with signal-to-interference ratio >17 dB and a power co-coupling coefficient of -3 dB without the need for interference cancelation techniques. Combining this architecture with wideband front ends could potentially lead to an aggregated data rate in the order of terabit per second in a PtP wireless line-of-sight link, not previously achieved experimentally to the best of authors' knowledge.
Original language | English |
---|---|
Pages (from-to) | 7073-7083 |
Number of pages | 11 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 70 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Multiple-input multiple-output (MIMO)
- quasi-optical (QO) antennas
- sub-THz
- wireless links