TY - JOUR
T1 - Full-year evaluation of nonmeteorological Echo removal with dual-polarization fuzzy logic for two C-band radars in a temperate climate
AU - Overeem, Aart
AU - Uijlenhoet, Remko
AU - Leijnse, Hidde
PY - 2020
Y1 - 2020
N2 - The Royal Netherlands Meteorological Institute (KNMI) operates two dual-polarization C-band weather radars in simultaneous transmission and reception (STAR; i.e., horizontally and vertically polarized pulses are transmitted simultaneously) mode, providing 2D radar rainfall products. Despite the application of Doppler and speckle filtering, remaining nonmeteorological echoes (especially sea clutter) mainly due to anomalous propagation still pose a problem. This calls for additional filtering algorithms, which can be realized by means of polarimetry. Here we explore the effectiveness of the open-source wradlib fuzzy echo classification and clutter identification based on polarimetric moments. Based on our study, this has recently been extended with the depolarization ratio and clutter phase alignment as new decision variables. Optimal values for weights of the different membership functions and threshold are determined employing a 4-h calibration dataset from one radar. The method is applied to a full year of volumetric data from the two radars in the Dutch temperate climate. The verification focuses on the presence of remaining nonmeteorological echoes by mapping the number of exceedances of radar reflectivity factors for given thresholds. Moreover, accumulated rainfall maps are obtained to detect unrealistically large rainfall depths. The results are compared to those for which no further filtering has been applied. Verification against rain gauge data reveals that only a little precipitation is removed. Because the fuzzy logic algorithm removes many nonmeteorological echoes, the practice to composite data from both radars in logarithmic space to hide these echoes is abandoned and replaced by linearly averaging reflectivities.
AB - The Royal Netherlands Meteorological Institute (KNMI) operates two dual-polarization C-band weather radars in simultaneous transmission and reception (STAR; i.e., horizontally and vertically polarized pulses are transmitted simultaneously) mode, providing 2D radar rainfall products. Despite the application of Doppler and speckle filtering, remaining nonmeteorological echoes (especially sea clutter) mainly due to anomalous propagation still pose a problem. This calls for additional filtering algorithms, which can be realized by means of polarimetry. Here we explore the effectiveness of the open-source wradlib fuzzy echo classification and clutter identification based on polarimetric moments. Based on our study, this has recently been extended with the depolarization ratio and clutter phase alignment as new decision variables. Optimal values for weights of the different membership functions and threshold are determined employing a 4-h calibration dataset from one radar. The method is applied to a full year of volumetric data from the two radars in the Dutch temperate climate. The verification focuses on the presence of remaining nonmeteorological echoes by mapping the number of exceedances of radar reflectivity factors for given thresholds. Moreover, accumulated rainfall maps are obtained to detect unrealistically large rainfall depths. The results are compared to those for which no further filtering has been applied. Verification against rain gauge data reveals that only a little precipitation is removed. Because the fuzzy logic algorithm removes many nonmeteorological echoes, the practice to composite data from both radars in logarithmic space to hide these echoes is abandoned and replaced by linearly averaging reflectivities.
UR - http://www.scopus.com/inward/record.url?scp=85090781196&partnerID=8YFLogxK
U2 - 10.1175/JTECH-D-19-0149.1
DO - 10.1175/JTECH-D-19-0149.1
M3 - Article
AN - SCOPUS:85090781196
SN - 0739-0572
VL - 37
SP - 1643
EP - 1660
JO - Journal of Atmospheric and Oceanic Technology
JF - Journal of Atmospheric and Oceanic Technology
IS - 9
ER -