TY - JOUR
T1 - Hydrodynamics of narrow-tube fixed bed reactors filled with Raschig rings
AU - Moghaddam, E. M.
AU - Foumeny, E. A.
AU - Stankiewicz, A. I.
AU - Padding, J. T.
PY - 2020
Y1 - 2020
N2 - The local flow structure and pressure drop in random packings of Raschig rings are analyzed using sequential Rigid Body Dynamics (RBD) method and Computational Fluid Dynamics (CFD) simulation. Tube-to-pellet diameter ratios, N, between 3 and 6 are investigated for laminar, transitional and turbulent flow regimes (5 ≤ Rep ≤ 3,000). The computed pressure drops are in good agreement with the empirical correlation of Nemec and Levec (2005), while the Ergun equation exhibited high deviations of more than 60%, even when it is modified to explicitly account for non-sphericity of pellets. This deviation is ascribed to additional sources for eddy formation offered by Rashig rings, compared to spheres and cylinders, which cannot be counterbalanced by the usage of a higher specific surface area. The 3D results of flow structure demonstrate a large influence of packing topology on the velocity distribution: rings oriented parallel to the flow accelerate the local velocity through their axial holes, while rings oriented perpendicular to the flow provide additional space for vortex formation. The flow fields are substantially different from that found in packings of spheres and cylinders, both in terms of volume of backflow regions and velocity hotspots. This implies a higher order of local flow inhomogeneity in azimuthal and axial directions compared to spherical and cylindrical packings. Furthermore, it is found that azimuthal averaging of the 3D velocity field over the bed volume, which has been used to improve classical plug-flow pseudo-homogenous models to account for the role of tortuous velocity fields, cannot reflect the appearance of vortex regions and thereby leads to underestimation of the local axial velocity values by over 500% of the inlet velocity.
AB - The local flow structure and pressure drop in random packings of Raschig rings are analyzed using sequential Rigid Body Dynamics (RBD) method and Computational Fluid Dynamics (CFD) simulation. Tube-to-pellet diameter ratios, N, between 3 and 6 are investigated for laminar, transitional and turbulent flow regimes (5 ≤ Rep ≤ 3,000). The computed pressure drops are in good agreement with the empirical correlation of Nemec and Levec (2005), while the Ergun equation exhibited high deviations of more than 60%, even when it is modified to explicitly account for non-sphericity of pellets. This deviation is ascribed to additional sources for eddy formation offered by Rashig rings, compared to spheres and cylinders, which cannot be counterbalanced by the usage of a higher specific surface area. The 3D results of flow structure demonstrate a large influence of packing topology on the velocity distribution: rings oriented parallel to the flow accelerate the local velocity through their axial holes, while rings oriented perpendicular to the flow provide additional space for vortex formation. The flow fields are substantially different from that found in packings of spheres and cylinders, both in terms of volume of backflow regions and velocity hotspots. This implies a higher order of local flow inhomogeneity in azimuthal and axial directions compared to spherical and cylindrical packings. Furthermore, it is found that azimuthal averaging of the 3D velocity field over the bed volume, which has been used to improve classical plug-flow pseudo-homogenous models to account for the role of tortuous velocity fields, cannot reflect the appearance of vortex regions and thereby leads to underestimation of the local axial velocity values by over 500% of the inlet velocity.
KW - Azimuthal Averaging
KW - Fixed Beds
KW - Hydrodynamics
KW - Particle – resolved CFD Simulations
KW - Raschig rings
KW - Rigid Body Dynamics
UR - http://www.scopus.com/inward/record.url?scp=85079365466&partnerID=8YFLogxK
U2 - 10.1016/j.cesx.2020.100057
DO - 10.1016/j.cesx.2020.100057
M3 - Article
AN - SCOPUS:85079365466
SN - 2590-1400
VL - 5
JO - Chemical Engineering Science: X
JF - Chemical Engineering Science: X
M1 - 100057
ER -