TY - JOUR
T1 - Inferring vehicle spacing in urban traffic from trajectory data
AU - Jiao, Yiru
AU - Calvert, Simeon C.
AU - van Cranenburgh, Sander
AU - van Lint, Hans
PY - 2023
Y1 - 2023
N2 - This study presents a new method to infer the average two-dimensional (2D) spacing between interacting vehicles in urban traffic from trajectory data. In this context, 2D spacing reflects the amount of road space consumed by pairs of interacting vehicles, and is related to 2D density at the macroscopic level. Due to complex interaction and conflicts in urban traffic, the inherent assumptions in traditional traffic flow models, such as unidirectional flow and homogeneity, are often violated. Such violation challenges direct measurement of urban vehicle spacing. The proposed method addresses this challenge by focusing on the relative movement between interacting vehicles and aggregating the accumulated presence of vehicles in similar scenarios. We apply the method to a large-scale urban trajectory dataset called pNEUMA, and validate the consistency of the method through bootstrapping. By applying the method we obtain a new empirical relation between the average 2D spacing and the relative speeds between interacting vehicles. There are similarities between this empirical relation with the classical Fundamental Diagram of traffic flow in terms of shape and interpretation, and so we term it the “interaction Fundamental Diagram” (iFD). However, there are also key differences. The iFD does not represent steady-state (homogeneous and stationary) longitudinal behaviour; it describes the average amount of road space needed for vehicle interactions at different relative speeds. We believe these iFD relations contribute to understanding vehicle interaction in urban traffic, and can offer new insights for designing safer and more efficient urban intersections.
AB - This study presents a new method to infer the average two-dimensional (2D) spacing between interacting vehicles in urban traffic from trajectory data. In this context, 2D spacing reflects the amount of road space consumed by pairs of interacting vehicles, and is related to 2D density at the macroscopic level. Due to complex interaction and conflicts in urban traffic, the inherent assumptions in traditional traffic flow models, such as unidirectional flow and homogeneity, are often violated. Such violation challenges direct measurement of urban vehicle spacing. The proposed method addresses this challenge by focusing on the relative movement between interacting vehicles and aggregating the accumulated presence of vehicles in similar scenarios. We apply the method to a large-scale urban trajectory dataset called pNEUMA, and validate the consistency of the method through bootstrapping. By applying the method we obtain a new empirical relation between the average 2D spacing and the relative speeds between interacting vehicles. There are similarities between this empirical relation with the classical Fundamental Diagram of traffic flow in terms of shape and interpretation, and so we term it the “interaction Fundamental Diagram” (iFD). However, there are also key differences. The iFD does not represent steady-state (homogeneous and stationary) longitudinal behaviour; it describes the average amount of road space needed for vehicle interactions at different relative speeds. We believe these iFD relations contribute to understanding vehicle interaction in urban traffic, and can offer new insights for designing safer and more efficient urban intersections.
KW - Fundamental Diagram
KW - Two-dimensional spacing
KW - Urban traffic
KW - Vehicle interaction
UR - http://www.scopus.com/inward/record.url?scp=85169296938&partnerID=8YFLogxK
U2 - 10.1016/j.trc.2023.104289
DO - 10.1016/j.trc.2023.104289
M3 - Article
AN - SCOPUS:85169296938
SN - 0968-090X
VL - 155
JO - Transportation Research Part C: Emerging Technologies
JF - Transportation Research Part C: Emerging Technologies
M1 - 104289
ER -