Abstract
A time-domain finite element model is developed to study the transient rolling contact of a driving wheelset over a curved track with Low Adhesion Zones (LAZs) shorter than 1.0 m. LAZs on one rail, i.e., unilateral LAZs occurring more likely, is treated for a speed up to 500 km/h. Structural vibrations of wheelset are analyzed to explain the transient contact forces, creepages and the resulting irregular wear. LAZs on high rails are found more detrimental than those on low rails. The results explain the occurrence of flats and rolling contact fatigue in bad weather, although significant wheel idling is absent.
Original language | English |
---|---|
Article number | 205053 |
Number of pages | 15 |
Journal | Wear |
Volume | 530-531 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Explicit FE method
- High-speed
- Irregular wear
- Low adhesion
- Vibrations
- Wheel-rail rolling contact