Abstract
Dynamic error budgets are an essential tool in identifying opportunities for improvements in a control system for Gravitational Wave detectors, but their potential is often not fully utilized in the control design. This paper presents a model and dynamic error budget for a challenging nested control system in the Advanced Virgo detector in combination with a systematic control design framework for one of the controllers. This framework fully utilizes the dynamic error budget by using H2 synthesis to allow for fast iterations in the control design when dealing with conflicting control objectives. Simulations together with experimental results on Advanced Virgo illustrate the effectiveness of the presented framework.
Original language | English |
---|---|
Pages (from-to) | 3411-3416 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 56 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2023 |
Event | 22nd IFAC World Congress - Yokohama, Japan Duration: 9 Jul 2023 → 14 Jul 2023 |
Keywords
- control design
- error budget
- Gravitational Waves
- H2
- Modelling
- systematic