Interaction between warm model ice and a propeller

T.J. Huisman, Reinier Bos, J Brouwer, G. Hagesteijn, Henk de Koning Gans

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

19 Citations (Scopus)


Ships sailing in ice require a propeller that is able to endure both extreme loads and fatigue loads and operate efficiently in ice and open water. Knowledge and descriptions of the physical processes of propeller-ice interaction are essential to model the interaction with its dominant parameters and finally predict the loads. The research described in this paper uses an experimental setup to determine if the crushing strength of ice, or in general a solid, is a dominant parameter in propeller-ice interaction as stated in empirical and theoretical models. Warm model ice, a paraffin based material to be used at room temperature, with ex-situ tested crushing strength, density and elasticity, is supplied to an in-situ model propeller at different rpms. One blade of the propeller is equipped with a six-component load sensor. Impacts are recorded in the time domain and synchronised with high speed footage. The data is analysed to understand and explain the impact behaviour by comparing it with rotational speed, load and footage. Scaling of the warm model ice properties is discussed as well due to density differences between warm model ice and sea ice.
Original languageEnglish
Title of host publicationProceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA
Subtitle of host publicationPolar and Arctic Science and Technology
EditorsB. Alessandrini, A. Aubault
Number of pages11
ISBN (Print)978-0-7918-4556-1
Publication statusPublished - 2014
EventASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering - New York, San Francisco, United States
Duration: 8 Jun 201413 Jun 2014
Conference number: 33


ConferenceASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
Abbreviated titleOMAE 2014
Country/TerritoryUnited States
CitySan Francisco


Dive into the research topics of 'Interaction between warm model ice and a propeller'. Together they form a unique fingerprint.

Cite this