Interface bonding properties of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash

Shizhe Zhang*, Shan He, Bahman Ghiassi, Klaas van Breugel, Guang Ye*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

126 Downloads (Pure)

Abstract

This paper presents an experimental study on the interface bonding properties of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash (AASF) pastes. Three interface bonding properties (i.e., the chemical bonding energy Gd, the initial frictional bond strength τ0, and slip-hardening behavior) were determined using single-fiber pullout tests. The microstructure and chemical composition of the reaction products in the fiber/matrix interfacial transition zone (ITZ) and the nearby matrix were also characterized to reveal the influence of PVA fiber to its surrounding matrix. It is found that Gd increases primarily with increasing Ca/(Si+Al) ratio of C-(N-)A-S-H gel. Unlike that in cementitious materials, the inclusion of PVA fiber in AASF pastes promotes the formation of a high-Ca C-(N-)A-S-H phase rather than crystalline portlandite near the fiber surface. This study provides useful guidance for tailoring the interface bonding properties of AASF and also the development of high-performance composites such as strain-hardening geopolymer composites.
Original languageEnglish
Article number107308
Number of pages12
JournalCement and Concrete Research
Volume173
DOIs
Publication statusPublished - 2023

Keywords

  • Bonding
  • Interface
  • Fiber pullout
  • PVA
  • Alkali-activation
  • Slag
  • Fly Ash

Fingerprint

Dive into the research topics of 'Interface bonding properties of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash'. Together they form a unique fingerprint.

Cite this