Investigation on the effect of interface properties on compressive failure behavior of 3D woven composites through micromechanics-based multiscale damage model

Tao Zheng, Licheng Guo*, Ruijian Sun, Tongtong Wang, Changqing Hong, Rinze Benedictus, John Alan Pascoe

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

6 Downloads (Pure)


In this paper, the effect of interface properties on the compressive failure behavior of 3D woven composites (3DWC) is investigated by incorporating a micromechanics-based multiscale damage model (MMDM). The correlation between the mesoscopic stress of yarns and microscopic stress of constituents is established by defining a stress amplification factor. With the microscopic stresses, the fiber breakage and matrix failure can be separately evaluated at the microscale, without assuming the yarns as transversely isotropic homogeneous materials. Especially, the interfacial debonding between yarns and matrix is also a dominant damage mode within 3DWC. Given that there is still a lack of studies on the influence of interfacial properties on the compressive failure behavior of 3DWC, it is meaningful to perform numerical parametric studies to reveal how the interface properties contribute to the damage mechanisms of 3DWC under compressions. The predicted results indicate that with the increase of interface strengths and fracture toughness, the compressive resistance of 3DWC can be significantly improved, resulting in higher strength and failure strain. Additionally, the studied 3DWCs with weak, medium and strong interfaces exhibit different damage development processes.

Original languageEnglish
Article number117186
Number of pages12
JournalComposite Structures
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • 3D woven composites
  • Compressive failure behavior
  • Interface
  • Micromechanics-based multiscale damage model
  • Numerical parametric study

Cite this