Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes

Ziyao Gao, Chenglong Zhao*, Kai Zhou, Junru Wu, Yao Tian, Xianming Deng, Lihan Zhang, Kui Lin, Marnix Wagemaker*, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Downloads (Pure)

Abstract

Nickel-rich layered oxide cathodes promise ultrahigh energy density but is plagued by the mechanical failure of the secondary particle upon (de)lithiation. Existing approaches for alleviating the structural degradation could retard pulverization, yet fail to tune the stress distribution and root out the formation of cracks. Herein, we report a unique strategy to uniformize the stress distribution in secondary particle via Kirkendall effect to stabilize the core region during electrochemical cycling. Exotic metal/metalloid oxides (such as Al2O3 or SiO2) is introduced as the heterogeneous nucleation seeds for the preferential growth of the precursor. The calcination treatment afterwards generates a dopant-rich interior structure with central Kirkendall void, due to the different diffusivity between the exotic element and nickel atom. The resulting cathode material exhibits superior structural and electrochemical reversibility, thus contributing to a high specific energy density (based on cathode) of 660 Wh kg−1 after 500 cycles with a retention rate of 86%. This study suggests that uniformizing stress distribution represents a promising pathway to tackle the structural instability facing nickel-rich layered oxide cathodes.

Original languageEnglish
Article number1503
Number of pages11
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - 2024

Fingerprint

Dive into the research topics of 'Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes'. Together they form a unique fingerprint.

Cite this