Mapping quantum algorithms to multi-core quantum computing architectures

Anabel Ovide, Santiago Rodrigo, Medina Bandic, Hans Van Someren, Sebastian Feld, Sergi Abadal, Eduard Alarcon, Carmen G. Almudever

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review


Current monolithic quantum computer architectures have limited scalability. One promising approach for scaling them up is to use a modular or multi-core architecture, in which different quantum processors (cores) are connected via quantum and classical links. This new architectural design poses new challenges such as the expensive inter-core communication. To reduce these movements when executing a quantum algorithm, an efficient mapping technique is required. In this paper, a detailed critical discussion of the quantum circuit mapping problem for multi-core quantum computing architectures is provided. In addition, we further explore the performance of a mapping method, which is formulated as a partitioning over time graph problem, by performing an architectural scalability analysis.

Original languageEnglish
Title of host publicationISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages5
ISBN (Electronic)9781665451093
Publication statusPublished - 2023
Event56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 - Monterey, United States
Duration: 21 May 202325 May 2023

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
ISSN (Print)0271-4310


Conference56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
Country/TerritoryUnited States

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • mapping of quantum algorithms
  • multi-core quantum computers
  • scalability quantum computing systems

Cite this