Mathematical modelling of expanded bed adsorption - a perspective on in silico process design

Victor Koppejan, Guilherme Ferreira, Dong Qiang Lin, Marcel Ottens*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
125 Downloads (Pure)

Abstract

Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial product concentration/purification process. Several mathematical models have been put forward to describe its operation. However, none of the models developed specifically for EBA allows simultaneous prediction of bed hydrodynamics, mass transfer/adsorption and (unwanted) interactions and fouling. This currently limits the development and early optimization of EBA-based separation processes. In multiphase reactor engineering, the use of multiphase computational fluid dynamics has been shown to improve fundamental understanding of fluidized beds. To advance EBA technology, a combination of particle, equipment and process scale models should be used. By employing a cascade of multiscale simulations, the various challenges EBA currently faces can be addressed. This allows for optimal design and selection of equipment, materials and process conditions, and reduces risks and development times of downstream processes involving EBA.

Original languageEnglish
Pages (from-to)1815-1826
JournalJournal of Chemical Technology and Biotechnology
Volume93
Issue number7
DOIs
Publication statusPublished - 2018

Keywords

  • Bioseparations
  • Chromatography
  • Downstream
  • Mathematical Modelling
  • Process Development

Fingerprint

Dive into the research topics of 'Mathematical modelling of expanded bed adsorption - a perspective on in silico process design'. Together they form a unique fingerprint.

Cite this