Matrix-Free Parallel Preconditioned Iterative Solvers for the 2D Helmholtz Equation Discretized with Finite Differences

Jinqiang Chen*, Vandana Dwarka, Cornelis Vuik

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

2 Downloads (Pure)

Abstract

We present a matrix-free parallel iterative solver for the Helmholtz equation related to applications in seismic problems and study its parallel performance. We apply Krylov subspace methods, GMRES, Bi-CGSTAB and IDR(s), to solve the linear system obtained from a second-order finite difference discretization. The Complex Shifted Laplace Preconditioner (CSLP) is employed to improve the convergence of Krylov solvers. The preconditioner is approximately inverted by multigrid iterations. For parallel computing, the global domain is partitioned blockwise. The standard MPI library is employed for data communication. The matrix-vector multiplication and preconditioning operator are implemented in a matrix-free way instead of constructing large, memory-consuming coefficient matrices. These adjustments lead to direct improvements in terms of memory consumption. Numerical experiments of model problems show that the matrix-free parallel solution method has satisfactory parallel performance and weak scalability. It allows us to solve larger problems in parallel to obtain more accurate numerical solutions.
Original languageEnglish
Title of host publicationMathematics in Industry
Subtitle of host publicationSCEE 2022, Amsterdam, The Netherlands, July 2022
EditorsM. van Beurden, N.V. Budko, G. Ciuprina, W. Schilders, H. Bansal, R. Barbulescu
PublisherSpringer
Pages61-68
Number of pages8
Volume43
Edition1
ISBN (Electronic)978-3-031-54517-7
ISBN (Print)978-3-031-54516-0
DOIs
Publication statusPublished - 2024
EventScientific Computing in Electrical Engineering - Amsterdam, Netherlands
Duration: 11 Jul 202214 Jul 2022

Publication series

NameMathematics in Industry
Volume43
ISSN (Print)1612-3956
ISSN (Electronic)2198-3283

Conference

ConferenceScientific Computing in Electrical Engineering
Abbreviated titleSCEE 2022
Country/TerritoryNetherlands
CityAmsterdam
Period11/07/2214/07/22

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Matrix-Free Parallel Preconditioned Iterative Solvers for the 2D Helmholtz Equation Discretized with Finite Differences'. Together they form a unique fingerprint.

Cite this